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ABSTRACT

Accurate location of earthquakes outside the boundaries of seismic networks is a well-
known challenge due to limited azimuthal coverage. Offshore earthquakes, particularly
along the Mendocino Transform fault, pose considerable risks to nearby communities.
However, the lack of permanent stations in marine environments hinders accurate earth-
quake location. This study investigates the feasibility of locating offshore earthquakes
around the Mendocino Triple Junction (MTJ) using advanced deep learning techniques.
We propose the location neural operator (LocNO), an innovative operator learning frame-
work that directly estimates earthquake locations from full-waveform data, even under
sparse and nonideal network conditions. The approach integrates the Fourier neural oper-
ator and graph neural operator to capture the intricate spatiotemporal dependencies of
seismic wavefields across stations and to estimate a spatial pseudoprobability density
function over earthquake source coordinates (easting, northing, and depth). Trained on
historical seismicity and simulated sparse network scenarios, LocNO generalizes across
varying network geometries and provides robust estimates for out-of-network events,
with the mean absolute errors on the order of 10 km horizontally and 4 km in depth.
A case study of the 2017 M,, 5.7 earthquake sequence, 218 km west of Ferndale,
California, demonstrates that LocNO yields robust locations for out-of-network earth-
quakes newly detected by the phase neural operator, even when recorded by only a
few stations with large azimuthal gaps. These results open a new avenue for investigating
MTJ seismotectonics using deep-learning-enhanced earthquake catalogs.
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Kohler et al., 2020), has located many offshore earthquakes
near the MTJ with errors exceeding 50 km compared to
U.S. Geological Survey (USGS) locations (Williamson et al.,
2023). This limitation creates significant uncertainties in the
earthquake locations, hindering the development of accurate
earthquake catalogs essential for seismic hazard assessment,
early warning systems, and seismotectonic research.

Several approaches have been proposed to address these
challenges and locate out-of-network earthquakes. Rubinstein
and Beroza (2007) developed a relocation technique to
improve earthquake locations for sparsely recorded earth-
quakes using full-waveform information. Array methods have
shown promise in locating offshore and out-of-network earth-
quakes in earthquake early warning systems (Eisermann et al.,
2018; Nof et al., 2019; Netanel et al., 2021; Jung et al., 2023; Ziv
et al., 2024). In addition, Bayesian frameworks have been
applied to improve earthquake location in non-optimal net-
work configurations. For example, Zollo et al. (2021) combined
arrival times, amplitude ratios, and back azimuths to detect
offshore seismicity. Williamson et al. (2023) proposed the
bEPIC algorithm, which integrates historical seismicity into
ShakeAlert’s location procedure using a Bayesian framework.
By incorporating prior seismic activity to downweight high-
error solutions in regions with little or no past seismicity,
bEPIC significantly reduced mean location errors offshore
northern California from 58 to 14 km, especially improving
performance for offshore and out-of-network events.

The emergence of machine learning in seismology offers
additional opportunities to advance earthquake location.
Some studies have shown that deep learning models can esti-
mate earthquake locations from single-station waveforms,
challenging the conventional notion that a minimum of three
seismic stations is necessary for triangulating and locating a
seismic source (Perol et al, 2018; Mousavi and Beroza,
2020; Elsayed et al., 2023; Castro et al, 2024). Other studies
follow the general use of earthquake location with multiple sta-
tions (Zhang et al., 2020; Chen et al., 2022; McBrearty and
Beroza, 2022, 2025; Zhu, Tai, et al.,, 2022; Kuang et al., 2024;
Si et al., 2024). By incorporating geographic locations of sta-
tions as node features, graph neural networks (GNNs; Gilmer
et al., 2017) have been applied to explore spatiotemporal rela-
tionships within seismic networks (Van Den Ende and
Ampuero, 2020; Zhang et al., 2022), enabling more accurate
earthquake location with adaptability to diverse station geom-
etries using one trained GNN model. However, these methods
are often optimized for well-instrumented seismic networks
and may underperform for offshore or sparsely instrumented
regions.

To overcome these limitations, this study investigates the
feasibility of using deep learning to locate out-of-network
earthquakes with sparse data, addressing the inherent chal-
lenges of locating offshore earthquakes with limited azimuthal
coverage. We propose the location neural operator (LocNO),
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an operator learning framework (Kovachki et al, 2023)
designed to locate earthquakes directly from the full-waveform
data recorded by seismic networks with arbitrary station geom-
etries. Recent advancements in operator learning offer prom-
ising alternatives for processing the seismic data (Sun et al,
2022, 2023; Aquib and Mai, 2024). Building on this progress,
our approach adapts and extends classic operator learning
frameworks (Li et al., 2020, 2021) to enhance offshore earth-
quake location using the full-waveform seismic datasets from
onshore stations.

To improve the offshore earthquake location accuracy in
the MT] region, we develop a training dataset by collecting his-
torical seismicity data from the region and simulating sparse
and nonideal station coverage scenarios. We randomly remove
stations from cataloged earthquakes and generate an artificial
out-of-network earthquake dataset for training purposes. By
leveraging the spatiotemporal information of the seismic data
recorded across multiple stations, LocNO is trained to directly
estimate event locations, even under nonideal network condi-
tions. The performance of the well-trained LocNO model
demonstrates its capability to accurately locate offshore earth-
quakes beyond the boundaries of the onshore seismic network.
LocNO provides locations for newly detected out-of-network
earthquakes in the MTJ region that are recorded by only a few
stations in the phase neural operator (PhaseNO)-detected
catalog (Sun et al., 2023), a setting that is challenging for
travel-time-based location methods, as demonstrated by its
application to an offshore sequence: the 22 September 2017
M,, 5.7 event located 218 km west of Ferndale, California.
Incorporating LocNO into the standard seismic monitoring
workflow has the potential to improve offshore location
accuracy, thereby advancing our understanding of the seismo-
tectonics in the MTJ region.

METHOD: LOCNO

We begin by introducing the fundamental principles underly-
ing neural operators, which form the basis of the LocNO
implemented in our public repository (Sun, 2025). For clarity,
all notations are summarized in Table 1. Neural operators
extend traditional neural networks by enabling mappings
between functions defined over infinite-dimensional spaces.
These models adhere to a version of the universal approxima-
tion theorem specifically formulated for operators (Kovachki
et al., 2023). One of the key applications of neural operators
is solving partial differential equations (PDEs), which inspires
their foundational design as approximations of inverse differ-
ential operators, typically represented by integral operators:

u(x) = (k% V)(x) = f V)Y, (1)

in which v and u are input and output functions of one integral
operator layer K, and « denotes the integration kernel. Here, x
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TABLE 1

Summary of Notations

Notation

General Variables

Fourier Neural Operator (FNO)

F
R

w

M;
Culy

Graph Neural Operator (GNO)

N (%)
2
my; = m(x;,x;)

Description

Input seismic waveform function

Time coordinate in the waveform input

Number of channels, discrete grid points, and stations, respectively

Index of seismic station

Index of spatial direction: k = 1 (easting), k = 2 (northing), and k = 3 (depth)
Kernel for integral operator layer

Input of an operator layer

Output of an operator layer via integration with x

Activation function (e.g., GELU or sigmoid function for converting logits into probabilities)
Lifting map to project f into a high-dimensional latent space

U-shaped neural operator composed of FNO and GNO layers

Extracted spatiotemporal features via U-shaped neural operator U

Fourier and inverse Fourier transforms

Learnable spectral kernel in frequency domain parameterized by 6
Local linear transformation

Number of Fourier modes retained at FNO layer /

Number of channels and discretization points at FNO layer /

Neighborhood of node x;

Message function (e.g., two-layer MLP)

The edge features (message) computed using ¢(v(x;),v(X;)) between

the node x; and x;, in which x; € N'(x;) is a neighboring node of the station i

m; = m(x;) The aggregated message at station i

v Update function (e.g., two-layer MLP)

D Radius threshold for defining graph edges

(a0,bo,Co) Geographical origin (longitude, latitude, and depth) used as the reference point for normalization
(ai,b;.c;) Geographical location of station / (longitude, latitude, and depth) in physical coordinates
(A,B,O) Physical range in longitude, latitude, and depth used for normalization

X, = (Xi.Yi.2) Input spatial coordinates of station i, normalized to the range [0,1]

Decoder and Output

gi(t) e Rext Spatiotemporal feature embedding at station /

si(n) e R3¢ Directional score from station i

s(n) e R3* Aggregated directional score over space

Q Station wise decoder mapping g;(t) to s;(n)

nt The £th discrete grid point along the kth spatial direction

st =s(nf) Logit score at discrete grid point £ in the spatial direction k

p(nf) Output probability at discrete grid point 2 in the spatial direction k

A Probability aggregator across stations

a; Attention weight for station /, satisfying ) ;a; = 1

Loss Function

pE(ng) Ground-truth probability at discrete grid point £ in the spatial direction k

Wy Loss weight for direction k

LioNo Total loss defined as weighted binary cross-entropy across all directions and grid points

and y denote coordinates (e.g., space, time, or other domain
variables) in the output and input domains, respectively.
Our approach extends the applicability of neural operators
beyond their traditional scope of solving PDEs by extracting
features from seismic wavefields and predicting a pseudo-
probabilistic function indicating the earthquake location.
For seismic wavefields, both x and y are 4D vectors represent-
ing spatiotemporal sampling points, and x(x,y) is a learnable
spatiotemporal kernel that governs the integration over
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neighboring points. Each spatiotemporal point x € R* consists
of three spatial coordinates and one time coordinate. For
clarity, we treat time t separately from x. At the ith station
(in which i = 1,...,N), the input waveform is expressed as
v;(t) = v(x;,t), in which x; represents the 3D spatial location
of the station. In practice, v;(¢) is not only the three-compo-
nent ground-motion time series but also includes the spatial
coordinates x; concatenated as three additional channels, so
that station location is explicitly embedded into the input
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representation. This time-dependent function serves as the
input representation for station i in a neural operator layer.
The corresponding learned feature representation after a neu-
ral operator layer is denoted as u;(t) = u(x;,t).

Various methods can be employed to parameterize the kernel
function x and implement X (Kovachki et al., 2023). Seismic data
collected by a network of multiple stations can be viewed as a
function discretized regularly in time at each station and irregu-
larly in space due to the nonuniform distribution of station
locations. Thus, we use graph neural operators (GNOs) to
represent the spatially irregular discretization and Fourier neural
operators (FNOs) to handle the temporally regular discretization.
Moreover, applying a kernel integral fully over the 4D spatiotem-
poral domain is computationally inefficient and unnecessary
because only a sparse set of seismic stations provides observed
1D time-series data. Therefore, we decouple temporal and spatial
feature extraction: temporal features are modeled using 1D FNOs
applied at individual stations, whereas spatial dependencies
across stations are captured using GNOs, where the temporal
signal at each station is considered as the node features in the
computational graph. Consequently, LocNO integrates both
ENO and GNO as the foundation of its architecture (Fig. 1).
In addition, FNO and GNO layers are interleaved, allowing
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Figure 1. Location neural operator (LocNO) architecture: (a) overview of the
LocNO model. The feature update process in (b) the second Fourier neural
operator (FNO) layer (/ = 2), and (c) the following graph neural operator
(GNO) layer. P, liting map; Q, decoder map; JF, Fourier transform; F~',
inverse Fourier transform; Ry, learnable spectral kernel; W, local linear
transformation; o, activation function; ¢, message function; v, update
function; v;, input feature at station i to one layer; u;, output feature at
station / from one layer; ; x C;, feature dimension at the /th FNO layer; m;,
edge feature between stations i and j; m;, aggregated message feature at
station /; X; = (x;,y:,2;), spatial coordinates of station /; and py, pseudo-
probability distribution of earthquake location. The model combines 1D
FNOs to extract temporal features at each station and GNOs to capture
spatial dependencies across stations. For clarity, only five stations are
illustrated (N = 5). See Table 1 and main text for full descriptions. The color
version of this figure is available only in the electronic edition.

temporal and spatial features to be progressively exchanged
and jointly encoded through successive layers.

FNO
The FNO computes the kernel « in the frequency domain by

transforming the input into the frequency domain with fast
Fourier transforms (FFT) (Li et al, 2021). Because the FFT
requires regular spacing, the FNO is best suited for inputs
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defined on regular grids, such as time series recorded at indi-
vidual seismic stations. According to the convolution theorem:

ui(t) = F (ReF (vi))(1), )

in which 7 and F! are the FFT and inverse Fourier trans-
form, respectively, and Ry is the Fourier-domain representa-
tion of the kernel, learned via parameters 0. During
training, the model effectively learns the frequency spectrum
of u;(t) through the multiplication in the Fourier domain.
However, learning high-frequency components can be more
challenging because high-frequency signals are often noisy.
Therefore, in practice, only the first M lowest-frequency modes
are retained and learned, whereas high-frequency modes are
truncated (Li et al., 2021). This strategy helps reduce overfit-
ting risk, improve numerical stability, lower training difficulty,
and decrease model complexity. Incorporating a local activa-
tion function o, the output of one FNO layer becomes

ui(t) = o(Wvi(t) + FH(ReF (v)) (1), (€)

with W being a pointwise linear transformation. Each FNO
layer includes two branches (Fig. 1): one performs the
Fourier-based global convolution, whereas the other applies
the local linear transformation W. The outputs are combined
before the activation function. The purpose of introducing a
nonlinear activation function after each integral operator is
to enable the network to approximate complex, nonlinear
mappings. Without such nonlinearities, the composition of
multiple integral operators would collapse into a single linear
operator, severely limiting the model’s expressive power. The
activation function o used in LocNO is the Gaussian error lin-
ear unit (GELU; Hendrycks and Gimpel, 2016).

LocNO is structured as a U-shaped neural operator, in
which changes in feature dimensions are governed by the
FNO layers applied at each spatially sampled station. Each
FNO layer models the long-range temporal dependencies
present in seismic waveforms by performing 1D global convo-
lution along the time dimension in the frequency domain.
Specifically, the input sequence at each station is first trans-
formed via the FFT, followed by a complex-valued multiplica-
tion with a learnable spectral kernel Ry, and then mapped back
via the inverse FFT. Operating in the Fourier domain allows
the network to capture global temporal patterns efficiently,
enabling it to integrate full-waveform information that is criti-
cal for improving the robustness and accuracy of hypocenter
estimation. At station i, the learned feature representation u; at
layer I has shape C; x L, in which C; denotes the number of
channels and L; represents the number of discretization points
along the primary axis (e.g., input time). LocNO consists of
seven FNO layers in total. The value of L; is related to the num-
ber of spatial bins in the predicted probability distribution and
thus constrains the spatial resolution of the estimated source
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location along the easting, northing, and depth directions.
Unless otherwise specified, we adopt the following parameter
settings for the feature dimensions and the number of retained
Fourier modes M, across FNO layers:

(L;}7_, = {3000,750,200,750,3000,3000,6000},  (4)
{C)]_, = {48,96,192,96,48,48,48}, (5)

(M}, = {24,12,8,8,12,24,24). (6)

In this U-shaped neural operator architecture, the number of
Fourier modes M; is progressively reduced in proportion to the
downsampling of the feature dimension along the primary
axis. Concurrently, the number of channels is increased to
compensate for the loss of feature resolution and to enrich
the feature representation in deeper layers (Fig. 1).

GNO

The kernel integration x in the spatial domain is computed
through message-passing graph neural networks (GNNs) (Li
et al., 2020; McBrearty and Beroza, 2023). In our method,
we treat the spatially irregular structure of the seismic data
as a graph: seismic stations are nodes, and their connectivity
forms the graph edges. Given node features v(x;) computed by
an FNO layer at individual stations, a GNO layer updates the
value v(x;) of node x; to a new representation u(x;) through an
averaging aggregation:

u(x) = w(v(xi),#

N (x;)] Z ¢(V(Xi)’v(xj))), (7)

X; eN(x;)

in which N (x;) denotes the set of neighboring nodes of x;.
The edge features m; = m(x;X;) are computed using
@(v(x;),v(x;)), in which ¢ is a differentiable function that maps
the node features from a pair of connected nodes concatenated
along the channel axis to a latent edge representation. In
LocNO, ¢ is implemented as a two-layer multilayer perceptron
(MLP) with a hidden layer size of 4C), in which C; is the chan-
nel dimension of the node features produced by the Ith FNO
layer preceding the /th GNO layer (Fig. 1).

Once edge features are generated, each node aggregates mes-
sages from its neighbors by averaging, and then concatenates the
aggregated message m; = m(x;) with its own original features
v(x;) along the channel axis. This concatenated tensor is passed
through another differentiable function, y(m(x;),v(x;)), also
implemented as a two-layer MLP with the same architecture
as ¢. The resulting u(x;) is the updated node representation.
This message-passing paradigm allows information to be
exchanged across neighboring nodes and supports the learning
of spatial correlations among seismic stations (Fig. 1).
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GNO adopts a message-passing framework similar to
GNNs, but is specifically designed for operator learning, ena-
bling the approximation of the kernel integration and the gen-
eralization across different discretizations. In GNO, the graph
is constructed based on a physical distance threshold D defined
in the input physical space, to approximate integration over
that domain. For any given node, its neighborhood set is com-
posed of all discretized points located within a radius D cen-
tered at that node. In the context of spatial domains such as
seismic networks, this means that the number of neighbors
corresponds to the number of seismic stations located within
that physical radius (geographic distance). Unlike radius-based
graphs, k-NN graphs (Franceschi et al, 2019) are not suitable
for GNO layers because they may restrict connectivity to local
clusters, which undermines the uniform spatial coverage
needed to accurately approximate kernel integrals.

Within a specified threshold D, nodes are fully connected to
form a graph, including self-loops where each node is con-
nected to itself. This threshold serves as a tunable hyperpara-
meter before training. Although seismic stations are irregularly
distributed in physical space, increasing the distance allows
more stations to be included within a single graph, which con-
sequently increases computational cost due to the increased
number of node-to-node communications. In this study, we
use a distance threshold of 300 km to account for the long-
range wave propagation from offshore earthquakes to onshore
stations. This ensures that all stations can effectively exchange
information to accurately determine hypocenter locations.

At each GNO layer, we concatenate the normalized node
coordinates with the output from the preceding FNO layers
to form the node attributes v(x;). The geographical locations
of all stations in the study area are normalized to the range
[0, 1] before concatenation, assuming a geographical origin
of (ag,by,cy) and a physical range of (4,B,C), representing lon-
gitude, latitude, and depth, respectively. If the geographic loca-
tion and depth of one station is (a;,b;,¢;), the normalized node
coordinates are computed as

a; —dgy _bi_b() Z:Cl‘_CO (8)

A 0 ViT TR AT

X; =

We use three channels to encode the node location information
in both the input layer and the GNO layers (Fig. 1). In each
channel, the corresponding normalized coordinate is repeated
along the primary discretization dimension, allowing it to be
concatenated with either the waveform input or the FNO output
features. This strategy ensures consistent spatial encoding for all
stations in the study area and enables the model to learn spatial
relationships among seismic stations, which is crucial for accu-
rate hypocenter location.

LOCNO
The LocNO is a hybrid architecture that combines the neural
operator U to extract the spatiotemporal features from seismic
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wavefields with a decoding module Q to estimate earthquake
locations (Fig. 1). The architecture of U/ integrates seven 1D
FNO layers to extract temporal features at each station and five
GNO layers to capture spatial dependencies across stations. The
feature dimensions change across FNO layers but remain con-
stant across GNO layers. These layers are sequentially connected;
however, the input to deeper FNO layers is formed by concat-
enating the features from earlier FNO layers with the output of
the corresponding deeper GNO layers, thereby introducing skip
connections. Such skip connections help preserve low-level tem-
poral information and facilitate gradient flow during training
(He et al., 2016). The model is capable of processing seismic data
with an arbitrary number of stations and flexible station geom-
etries. For clarity, Figure 1 illustrates only five stations. The bot-
tom panels in Figure 1 depict the feature update process in the
second FNO layer (I = 2) and the second GNO layer. In this
figure, the five stations (N = 5) are fully connected in the com-
putational graph of the GNO layer; however, the actual graph
connectivity is determined by the interstation distances and
the threshold D. The message aggregation and update process
is illustrated for the station i = 1, but the same procedure is
applied to all other stations. The output is a pseudoprobability
distribution of the earthquake source location along the easting,
northing, and depth directions, with the index of the highest
probability corresponding to the ground truth in each direction.
After discretization, the input function f is represented as a
tensor of shape C x L x N, in which C is the number of chan-
nels, L is the number of temporal samples, and N is the number
of stations. Each station provides three-channel waveforms,
either recorded along three orthogonal directions or repeated
single-channel measurements. In addition, the spatial coordi-
nates x; = (x;,y;2;) of each station are repeated L times and
concatenated to the time series as three additional channels,
encoding positional information directly into the temporal fea-
ture input v;(t). The spatiotemporal feature h & RN
extracted by the U-shaped neural operator I/ is given by

h = U[P()), ©)
in which P is a lifting operator that maps the input function f
into a higher-dimensional representation P(f) € R¢>IN P in
LocNO is a single fully connected layer, which maps the discre-
tized input function to a latent space with C; channels. This
lifting operation is applied locally at each spatial or temporal
location, with shared parameters across the entire input domain.
Such parameter sharing ensures that P behaves as a proper
operator, independent of the discretization of the input function.

The architecture of I/ integrates FNO and GNO to leverage
their complementary strengths. Similar to PhaseNO (Sun et al.,
2023), the FNO component establishes a U-shaped architec-
ture, whereas the GNO facilitates information exchange among
multiple stations. To enhance the exchange of features between
the temporal and spatial domains, a GNO layer is strategically
placed between two FNO layers.
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We treat the output of the neural operator i; € R“*L7 at the
station i as a latent embedding that implicitly captures the sta-
tion’s spatiotemporal response to a seismic event. The follow-
ing layer of the model is a shared decoder Q which maps the
station-level latent features to directional score vectors over
discretized spatial coordinates. Specifically, the latent embed-
ding h; is decoded into a three-channel output corresponding
to the easting, northing, and depth directions:

si(n) = Q(hy) € R¥, (10)

in which each channel of s;(1n) represents a discrete score vector
over one spatial axis, defined on L grid points {n}};_, for direc-
tion k = 1,2,3. Q in LocNO is implemented as a two-layer fully
connected network with an input width (channel) of 48, a hid-
den layer of size 96, and an output layer with three channels.

To obtain the score vector s(n) for all stations, we aggregate
the station-wise estimates {s;(n)}Y., using a structured atten-
tion pooling operator .A. Specifically, for each station i, a scalar
attention weight is computed by applying a convolutional neu-
ral network (CNN) with a kernel size of one over the score
s;(n). The resulting attention logits are averaged over the fea-
ture dimensions to yield a single scalar per station, and then
normalized across stations via a softmax function to produce
the attention weights. The total score is then given by

N
s(n) = A(tsi(m¥L) = D aisi(m) €R™, (1)

in which «; € [0,1] is the normalized attention weight assigned to
station i, satisfying > ¥ | a; = 1. As a special case, uniform aver-
aging corresponds to setting ; = +; for all i, which is equivalent
to aggregating the station-level predictions via mean pooling.

Finally, for each direction k, the score sf = s(n}) is trans-
formed into a pseudoprobability distribution by applying the
sigmoid function ¢ independently to each entry

pr(nf) = o(sp) = ﬁ for £ = 1,...,L. (12)
The loss function is defined as the sum of binary cross-entropy
losses between the predicted and true probability distributions,
applied independently to each spatial direction k and grid
point €. The ground-truth distribution in each direction
pi(ng) €[0,1] is modeled as a truncated Gaussian centered
at the true source coordinate, allowing the network to learn
a continuous approximation over the discretized spatial grid.
The loss is defined as

L
‘CLOCNO =
=

3
Wy Z[—PZ (n) log py (1)
k=1

= (1= pi(n)) log(1 = py(m))], (13)

—_

Volume XX Number XX - 2024 www.bssaonline.org

in which wy is a user-defined weight for direction k. This for-
mulation treats each grid point as an independent binary clas-
sification task and supports soft target distributions, encouraging
the model to produce accurate pseudoprobability densities over
the discretized spatial grid in each direction.

The LocNO model is implemented using PyTorch, with
custom modules for neural operator layers. Optimization is
performed using the Adam optimizer with an initial learning
rate of 1x 10™%. Adam adaptively adjusts learning rates for
individual parameters using estimates of the first and second
moments of the gradients, which improves convergence stabil-
ity and efficiency. To further refine training, the learning rate is
reduced by a factor of 0.1 when the validation loss does not
improve for 10 consecutive epochs, where one epoch refers
to a complete pass through the entire training dataset. This
scheduler helps the model escape flat regions or suboptimal
local minima during training. Model training and evaluation
are conducted on a high-performance computing cluster
equipped with NVIDIA graphics processing units, which ena-
bles efficient processing of large-scale seismic datasets.

DATA

To test the algorithm and to locate offshore earthquakes in the
MT] region, we use a dataset composed of earthquake wave-
forms and event catalogs around the MT] region spanning
three decades (Zhu et al., 2025), sourced from the Northern
California Earthquake Data Center (NCEDC). Many down-
loaded earthquake data based on the NCEDC catalog are
in-network events, where seismic stations are distributed
around the earthquake’s location. The available out-of-net-
work earthquakes are insufficient in quantity to create a large
and diverse training dataset for deep learning models.

To enable the LocNO model to handle offshore and out-of-
network earthquakes, we adopt a strategy to artificially gener-
ate additional out-of-network events from the existing in-net-
work events. This is achieved by systematically removing
selected seismic stations from the network surrounding an
in-network earthquake. By strategically reducing the station
coverage in specific areas, we simulate scenarios where the
earthquake occurs outside the dense monitoring regions, effec-
tively creating synthetic out-of-network events. These gener-
ated samples are then incorporated into the training dataset,
enhancing the model’s ability to generalize to real-world cases
of out-of-network earthquakes.

Figure 2 illustrates the method for constructing an out-of-
network earthquake sample from an in-network event. The
process begins by positioning the earthquake’s location at the
center of an easting-northing coordinate system. A series of
straight lines with slopes ranging from —1 to 1 is systematically
drawn through this central point. For each line, the seismic sta-
tions are counted and grouped based on their positions relative
to the line (either above or below). The line that minimizes the
total number of seismic stations on one side is identified.
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Figure 2. Diagram illustrating the procedure for generating (a) an out-of-net-
work earthquake sample from (b) an in-network event. Starting at the
earthquake’s location in an easting—northing coordinate system, draw a
straight line and count the seismic stations on each side. Repeat the process
with lines of varying slopes from —1 to 1. Choose the line where one side
has the fewest seismic stations and remove those stations. The remaining
stations, all located on one side of the earthquake’s position, form the out-
of-network earthquake sample.

Stations on the less-populated side are excluded from further
analysis. This approach ensures that the remaining seismic sta-
tions are all located on one side of the earthquake’s position,
effectively isolating the event from a portion of the seismic net-
work and generating a well-defined out-of-network earthquake
sample. Furthermore, we include the resulting earthquake sam-
ple in the training dataset only if the out-of-network earthquake
is recorded by at least four stations.

Figure 3 shows the map of all out-of-network earthquakes
and the remaining stations in the resulting dataset. All stations
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Figure 4. (a—d) Dataset of out-of-network earthquakes in the MTJ region for
LocNO training and evaluation: We split the dataset based on their time:
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Figure 3. Earthquakes near the Mendocino Triple Junction (MTJ) region from
1987 to 2021. Plate boundaries are drawn following Bird (2003). The color
version of this figure is available only in the electronic edition.

are onshore, whereas most earthquakes are offshore and clas-
sified as out-of-network earthquakes for these onshore sta-
tions. The dataset was split chronologically, with the events
occurring before 2016 used for training, the events from
2016 for validation, and those from 2017 to 2021 for testing
(Fig. 4). This resulted in 2486 training samples, 209 validation
samples, and 911 test samples. We remove microseismicity
below a magnitude of one from this dataset due to the large
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earthquakes before 2016, in 2016, and from 2017 to 2021, respectively,
into the training, validation, and test datasets.
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offset between earthquake hypocenters and onshore stations.
Both the training and test datasets cover a wide range of depth
from surface to 40 km and magnitudes from 1 to 6 (Fig. 4).
Most events have magnitudes between 1 and 5, at depths of
0-30 km, and were recorded by 4-13 stations.

LocNO is designed to be used in conjunction with external
earthquake detection algorithms as part of a seismic monitor-
ing workflow. Once an event is detected, LocNO is applied to
estimate its location using waveforms from the stations where
seismic signals have been identified. We use a waveform length
of 30 s for all input stations, unless otherwise noted, where we
study the impact of alternative lengths (5, 10, and 20 s) on per-
formance. Because the input is event-based, the P-wave arrival
exhibits moveout and therefore varies across stations. To pre-
vent the model from relying on the absolute arrival time for
location, we randomly place the earliest P-wave arrival within
a window between 1 and 5 s from the beginning of the input
waveform during training. During testing, the earliest arrival
time is fixed at 1 s. In addition, in practical applications, it
is common that a small subset of stations in a network may
record clipped, low SNR, or otherwise unusable data. To
improve the model’s robustness, we explicitly simulated this
condition during training by randomly including virtual sta-
tions that contain only noise in each training sample. This
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Figure 5. Comparison of earthquake locations between (a) the Northern
California Earthquake Data Center (NCEDC) catalog and (b) the LocNO
prediction in the out-of-network earthquake test dataset. (c) Epicentral
location errors illustrated with arrows pointing from catalog locations to the
corresponding LocNO-predicted locations. The color version of this figure is
available only in the electronic edition.

approach allows LocNO to learn to downweight or ignore sta-
tions with uninformative or misleading input. To simulate
real-world scenarios where not all stations record high-quality
earthquake signals, we augmented the dataset with up to two
virtual stations placed randomly within the boundary of sta-
tions. Noise waveforms were randomly selected from the
STanford EArthquake Dataset (Mousavi et al., 2019), ensuring
sample-specific variability. Note that in practical applications,
the majority of associated stations for a detected earthquake are
expected to contain meaningful signals. Therefore, it is not
necessary to add many virtual stations, particularly in this
dataset where many samples include only four stations
(Fig. 4). All waveforms were preprocessed with trend removal,
band-pass filtering (1-10 Hz), and normalization.

The study area for the MT]J region (Fig. 3) is defined as a
geographical domain spanning 8° in both longitude and lati-
tude. The longitude range extends from —128° to —120°, and
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the latitude range covers from 35° to 43°. In addition, the depth
ranges from —5 to 45 km, including the depth of stations above
the sea level and the maximum depth of earthquakes in the
dataset. The domain’s coordinates in the three directions were
independently normalized to [0,1] for compatibility with the
learning process. Normalized positions of stations (x;,;,z;)
are included in the node attributes along with three-compo-
nent waveform data.

The sample label is generated based on catalog locations and
consists of three channels, each representing a 1D probability
function. These channels indicate the likelihood of the earth-
quake’s occurrence along the easting, northing, and depth
directions. Each channel is modeled as a truncated Gaussian
function centered on the true location, where the real position
has a maximum probability of one, gradually decaying to zero.
For longitude and latitude, the probability function spans a
width equal to 1/30 of the total range, whereas for depth, it
spans a wider width of 1/12 of the total range. This broader
Gaussian function for depth accounts for the greater uncer-
tainty in determining earthquake depth using surface observa-
tions, particularly for out-of-network events.

RESULTS

Locating offshore earthquakes in the MTJ region

The LocNO model was evaluated after being trained for 20
epochs. Figure 5 compares the earthquake locations deter-
mined by the trained LocNO model with those from the
NCEDC catalog using the out-of-network earthquakes in the
test dataset. The results demonstrate that LocNO provides
location estimates aligned with the NCEDC catalog. Notably,
the model achieves higher accuracy for events near the
Mendocino transform fault, showcasing its effectiveness in this
tectonically active region.

However, larger discrepancies are observed for some events
located farther from the Mendocino transform fault. These
larger differences can be attributed to the limited number of
prior seismic events in those areas available for training. As
10
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Figure 6. Histograms of location errors between LocNO and the NCEDC cata-
log for out-of-network earthquakes in the test dataset, shown separately for
(a) easting (x), (b) northing (y), (c) depth (z), and (d) total hypocenter error.
Evaluation metrics include mean absolute error (MAE), mean error (Mean),
and standard deviation (STD), all in kilometers (km).

a supervised learning method, LocNO learns spatiotemporal
features by capturing statistical relationships among multista-
tion waveform patterns. Its generalization ability is, therefore,
the strongest in regions where the training data are sufficiently
dense and representative. In this study, the training catalog
contains relatively few well-recorded events in the offshore
region far from the fault, which limits the model’s ability to
learn reliable waveform-location relationships for those areas.

Figure 6 shows a quantitative comparison of location errors
in easting, northing, and depth, evaluated using the metrics of
mean absolute error (MAE), mean error (Mean), and standard
deviation (STD). Location errors in degrees were converted to
kilometers using a conversion factor of 111 km/° for latitude
and ~85 km/° for longitude, consistent with the geographic
position near the Mendocino transform fault. The MAE of
the location errors is 10.71 km in easting, 9.75 km in northing,
and 4.32 km in depth. LocNO provides location estimates
within 20 km of the NCEDC catalog for 75% of the events
in the test dataset (Fig. 6). These location errors are reasonable
given that most events are located using only 4-6 stations
(Fig. 4). The distribution of seismic stations, which is sparse
along the easting direction but relatively uniform along the
northing direction (Fig. 3), leads to larger location errors in
easting than northing.

Figure 7 shows the epicenter errors between LocNO predic-
tions and the NCEDC catalog for events located using 4-9 sta-
tions in the test dataset. Each panel corresponds to a fixed
number of stations and presents epicenter errors as a function
of the primary azimuthal gap. The minimum primary azimu-
thal gap is 180° for all samples due to the inclusion of out-of-
network events. We bin the data into azimuthal gap ranges
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from 180° to 360° and compute the mean error (Mean)
and standard deviation (STD) of epicenter errors in each
bin. These statistics are most informative when sufficient sam-
ples exist in a bin. As described more fully subsequently, this
figure demonstrates that increasing the number of stations and
reducing the azimuthal gap improves the earthquake locations.

LocNO demonstrates the ability to handle out-of-network
scenarios and maintains reliable performance even as the azi-
muthal gap increases. Although epicenter errors tend to
increase slightly with larger azimuthal gaps, particularly when
only a few stations are available, the overall performance

Volume XX Number XX - 2024 www.bssaonline.org

Primary azimuthal gap (°)

Figure 7. Epicenter errors as a function of the primary azimuthal gap, com-
paring LocNO predictions with the NCEDC catalog for events located using
(a) 4, (b) 5, () 6, (d) 7, (e) 8, and (f) 9 stations in the test dataset.
Histograms show the number of samples in each range of the primary
azimuthal gap. The mean (Mean) and standard deviation (STD) of epicenter
errors within each bin are labeled on the histograms. The overall Mean and
STD for all samples in each panel are noted at the top of the corresponding
subplot.
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improves with more stations. Specifically: (1) for events located
with nine stations, the overall mean and standard deviation of
epicenter errors are 11.4 and 11.0 km, respectively, which are
nearly half the values observed with only four stations; and (2)
the number of outliers, defined as samples with unusually large
epicenter errors relative to their bin mean, declines because the
number of stations increases.

Figure 8 shows two examples of offshore earthquakes that
are relatively well located by LocNO, with their origin times,
magnitudes, and depths annotated on the figure. The seismic
stations used by LocNO for locating these earthquakes are also
highlighted. These examples demonstrate that, despite the
challenges of having only several stations, large distances from
the earthquake origin, and poor geometric coverage, the
trained LocNO model accurately estimates the earthquake
locations. This performance is achieved by effectively utilizing
seismic records with relatively high SNR, which was estimated
as the ratio of standard deviations between two five-second
windows following and preceding the P-wave arrival. In
contrast, offshore events with low SNR and clustered station
configurations are poorly located by LocNO under these
challenging monitoring conditions (Fig. 9).
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Figure 8. Examples of offshore earthquakes that are relatively well located by
LocNO. The map annotates the epicentral error £,,, the catalog depth
Zncepc, and the LocNO-predicted depth z. For each event (row), the panels
(a,c) show the earthquake and station locations, and the panels (b,

d) present the waveform inputs to LocNO. The origin time and magnitude
are labeled above the waveforms. The signal-to-noise ratio (SNR) (in dB) is
labeled on each trace. The P-wave (blue) and S-wave (red) arrival times used
for earthquake locations in the NCEDC catalog are labeled on the wave-
forms. The color version of this figure is available only in the electronic
edition.

The NCEDC catalog locations used as a reference point in
these comparisons are also subject to significant uncertainties,
especially for offshore events with poor station coverage.
Figures 8 and 9 include the full spatial probability maps predicted
by LocNO, which provide a more informative representation of
location uncertainty. These maps allow readers to evaluate
whether the catalog locations fall within high-probability regions
of the LocNO’s output. When comparing with NCEDC loca-
tions, we should keep in mind that both LocNO and the catalog
locations are subject to uncertainty, and the observed differences
do not necessarily imply error from a single source.
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Effect of waveform preprocessing settings

We investigate the impact of waveform preprocessing settings
on the performance of LocNO. As a full-waveform location
method, LocNO leverages all information contained in the input
waveforms to infer earthquake hypocenters. Therefore, the pre-
processing configuration may significantly influence the results.
Under various waveform filtering bands and window lengths,
Table 2 compares the location performance in terms of MAE
between LocNO predictions and the catalog locations in the
easting, northing, and depth directions for all test samples.
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Figure 9. (a—d) Examples of offshore earthquakes poorly located by LocNO.
The map annotates the epicentral error £, the catalog depth zycgpc, and
the LocNO-predicted depth z. The SNR (in decibels [dB]) is labeled on each
trace. The blue lines mark the P-wave arrival times reported in the NCEDC
catalog. In these cases, the lack of training data, the low SNR of the
waveforms, and the cluster of stations impact the model’s ability to
accurately estimate earthquake locations. The color version of this figure is
available only in the electronic edition.

TABLE 2

Effect of Waveform Preprocessing Settings (Filtering and Waveform Length) on Location Performance, Measured by Mean

Absolute Error (MAE)

Waveform Setting MAE (Easting)
1-10 Hz 30s 10.71 km
20s 12.61 km
10s 16.63 km
5s 23.18 km
30s 1-20 Hz 10.98 km
1-10 Hz 10.71 km
1-5 Hz 12.47 km

MAE (Northing) MAE (Depth)
9.75 km 4.32 km
9.02 km 4.02 km
8.28 km 4.33 km
9.87 km 4.77 km
11.40 km 4.18 km
9.75 km 4.32 km
10.20 km 4.50 km
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Figure 10. Dataset of in-network earthquakes near the MTJ region (1987—
2021). This dataset serves as a benchmark for comparing LocNO with a
baseline deep learning model for earthquake location using full-waveform
data. The locations of these events are well determined by the onshore
seismic network. The color version of this figure is available only in the
electronic edition.

First, using waveforms filtered in the 1-10 Hz band, we
evaluate the effect of different window lengths: 5, 10, 20, and
30 s. A clear trend is observed in the easting direction: location
errors increase because the window length shortens. This may be
attributed to the uneven station distribution because all stations
are located east of the offshore earthquakes in the MTJ region.
The full-waveform information preserved in longer time win-
dows helps mitigate errors caused by this nonideal station geom-
etry. In the northing direction, where stations are distributed
more symmetrically, the effect of window length is less pro-
nounced, with an average location error of around 10 km.
Depth errors are relatively stable across all settings, likely due
to the intrinsic difficulty of resolving depth using surface stations
at large epicentral distances and limited azimuthal coverage.

Overall, waveform length shows a stronger influence on loca-
tion accuracy, particularly in the easting direction due to the
asymmetric station geometry. Notably, with a 5 s window (~4 s
after P-wave arrival), the location error increases to 16.53 km
(averaged over easting and northing), which is comparable to the
performance of the bEPIC algorithm (14 km) in the MTJ region
(Williamson et al., 2023). This highlights the potential of LocNO
for earthquake early warning applications in the MT] area using
short-window waveforms and only a few stations.

Next, fixing the waveform length at 30 s, we investigate the
effect of applying band-pass filters at 1-5 Hz, 1-10 Hz, and
1-20 Hz to the observed waveform data before feeding it into
LocNO. Among these, the 1-10 Hz band yields the best per-
formance in the easting and northing directions, with an aver-
age MAE of 10.23 km, indicating that overly narrow filtering
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may remove useful high-frequency information needed for
accurate location, whereas wider bands may retain noise.
These trends are consistent with expectations: raising the
upper frequency bound to 20 Hz may introduce noise, while
lowering it to 5 Hz may filter out informative signal compo-
nents. In terms of depth, the error increases gradually from
4.18 km (1-20 Hz) to 4.50 km (1-5 Hz). Still, the degradation
from using the 1-5 Hz band is not substantial. Given that most
regional velocity models are better suited for modeling low-fre-
quency waveforms, the 1-5 Hz band may provide a reasonable
trade-off between accuracy and generalizability, especially for
training LocNO with synthetic waveform datasets simulated
on a known velocity model.

Benchmark with SeismicGNN

In addition to evaluating LocNO’s performance on out-of-net-
work earthquake location, we benchmark its capabilities
against other state-of-the-art deep learning models using
well-monitored earthquake datasets, which have been exten-
sively studied. Specifically, we compile a dataset of onshore
earthquakes near the MT] region (Fig. 10), covering the period
from 1987 to 2021. This dataset provides an ideal testing
ground due to the high-quality monitoring afforded by the
dense onshore seismic network, which ensures relatively more
reliable location data for comparison. Similar to the out-of-net-
work dataset, each event in this onshore dataset is associated
with 4-15 stations. In line with the previous approach, the
dataset was split chronologically, with 1344 events recorded
before 2016 used for training and 605 events from 2017 to
2021 reserved for testing.

Figure 11 presents a comparative analysis of the location
performance between LocNO and SeismicGNN (Van Den
Ende and Ampuero, 2020) on the in-network test dataset.
SeismicGNN, a graph neural network framework, incorporates
spatial information for seismic source characterization by facili-
tating information exchange between seismic stations. Node fea-
tures at individual stations are processed using a CNN and an
MLP to estimate earthquake locations. The baseline model was
retrained on the same dataset as LocNO to ensure a fair com-
parison. However, the SeismicGNN model retrained with the
NCEDC dataset compiled in this study performs worse than
the original model reported in Van Den Ende and Ampuero
(2020). The original model was trained on events with a mini-
mum magnitude of 3 and at least 21 associated stations. In con-
trast, the dataset used here includes events with magnitudes as
low as 1 and only 4-15 stations per event. This suggests that
SeismicGNN may be less effective on more challenging datasets
compared to high-quality training data.

The results
SeismicGNN in geographic location accuracy, highlighting
its ability to effectively leverage operator learning for earth-
quake location with full-waveform data (Fig. 11). LocNO
achieves MAEs of 6.78 km (easting) and 5.52 km (northing),

demonstrate that LocNO outperforms
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compared with 48.61 and 31.26 km for SeismicGNN, respec-
tively, clearly showing LocNO’s improvement in both direc-
tions. In addition, with a depth MAE of 594 km for
LocNO compared to 6.36 km for SeismicGNN, LocNO shows
comparable depth prediction, which is traditionally challeng-
ing when relying solely on surface observations.

Furthermore, a comparison of the histograms in Figures 6
and 11 reveals that LocNO achieves significantly lower location
errors for in-network earthquakes compared to out-of-network
earthquakes across all evaluation metrics. This finding aligns
with the intuitive understanding that locating out-of-network
earthquakes is inherently a more challenging problem due to
limited station coverage. The complexity of this task under-
scores the necessity of training specialized deep-learning mod-
els tailored to out-of-network earthquake location.

Application to an offshore earthquake sequence: The
22 September 2017 M,, 5.7 event, 218 km west of
Ferndale, California
A typical seismic monitoring workflow includes earthquake
detection, seismic phase picking, initial location, and relocation.
Traditional initial location methods rely on travel-time algo-
rithms using picked phase arrivals, and they generally perform
well when the seismic network has favorable geometry (see Yu
et al., 2025, for a benchmark study using synthetic controlled
experiments). However, in regions with sparse or uneven station
coverage, such as offshore settings, solutions to travel-time-
based inverse problems are often unstable and can result in large
location errors that are difficult to correct during relocation. In
contrast, LocNO directly utilizes the spatiotemporal information
contained in the multistation waveforms to infer earthquake
hypocenters. As shown in Table 2, longer waveform segments
better correct artifacts caused by uneven station distribution,
confirming that waveform data provide additional constraints
for mitigating such errors.

Since events before 2016 were used to construct the training
dataset, we select an earthquake sequence that occurred after
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Figure 11. (a—c) Comparison of the locations determined by LocNO and
SeismicGNN on the in-network test dataset in the MTJ. LocNO yielded
mean absolute errors in horizontal locations that are less than 18% of the
errors yielded by SeismicGNN. The errors in the determined depths were
comparable between the two methods.

2016 for this case study. According to the NCEDC catalog, an
M,, 5.7 event occurred on 22 September 2017, ~218 km west of
Ferndale, California. To analyze this earthquake sequence, we
downloaded continuous waveform data from 25 onshore sta-
tions in Northern California (NC) and Plate Boundary
Observatory Borehole (PB) networks via NCEDC, covering
21-28 September 2017. The selected seismic network consists
of a combination of the three-component EH (high-gain short-
period) channels, the three-component broadband HH (high-
gain broadband) channels, and the one-component EH chan-
nels, as listed in Data and Resources.

LocNO can be applied after any detection algorithm, even
when the method does not involve phase picking. In this study,
however, we adopt a workflow that begins with phase picking
using PhaseNO (Sun et al., 2023), which performs both detec-
tion and picking directly on continuous seismic data. The
resulting picks are then associated into events using GaMMA
(Zhu, McBrearty, et al., 2022), and LocNO is subsequently used
to estimate the event locations based on the full-waveform
information. For comparison, we also determine the locations
of the earthquakes in the new catalog using HYPOINVERSE, a
travel-time-based location algorithm that has been widely used
for decades (Klein, 2002).

As a result, we construct an earthquake catalog for this off-
shore sequence containing 141 events over seven days. Each
event is required to have at least eight associated phases,
including both the P-wave and the S-wave arrivals. The num-
ber of earthquakes in this new catalog is nearly one order of
magnitude greater than the 15 events reported by NCEDC for
the same period (Fig. 12a). Figure 12b,d compares the locations
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of these newly detected events with those in the NCEDC cata-
log. Figure 12¢ shows the locations estimated by GaMMA dur-
ing phase association. For travel-time-based location, we use
the 1D velocity model from Morton et al. (2023). Because
of poor network geometry and a large primary azimuthal
gap, events in the far western portion of the sequence, near
the mainshock, are difficult to locate accurately using travel-
time-based methods. In contrast, locations estimated by
LocNO are closer to the Mendocino transform fault and to the
NCEDC catalog events. In addition, several earthquakes near
the mainshock hypocenter are incorrectly located by GaMMA
and HYPOINVERSE, whereas LocNO provides locations that
are more consistent with the mainshock’s hypocenter.

DISCUSSION

This study introduces LocNO and an effective training strategy
to address the challenges of earthquake location in regions with
sparse station coverage and large azimuthal gaps. Advanced
operator-learning techniques have proven highly adaptable to
complex network geometries, establishing themselves as
powerful tools to uncover the spatiotemporal patterns in seis-
mic data for earthquake location. The architecture of LocNO is
designed to leverage the waveform information directly,
allowing it to mitigate artifacts even when the station coverage
is sparse or the azimuthal gaps are large. This makes it highly
applicable to offshore regions such as the MTJ, where tradi-
tional travel-time-based methods often struggle due to the lack
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Figure 12. 22 September 2017 M,, 5.7 offshore earthquake sequence and
their locations. (a) Comparison of earthquake counts between the newly
detected catalog and the NCEDC catalog. Comparison of NCEDC catalog
locations with earthquake locations determined by (b) the LocNO model,
(c) GaMMA during phase association, and (d) HYPOINVERSE. The color
version of this figure is available only in the electronic edition.

of permanent stations in the marine environment.
Quantitatively, LocNO achieves mean absolute errors of
~10 km in horizontal location and 4 km in depth when com-
pared to the NCEDC catalog. Furthermore, LocNO can be
integrated into deep-learning-based seismic monitoring work-
flows, where many of the detected small-magnitude events are
recorded by only a few stations. In such cases, including addi-
tional distant stations may not meaningfully improve the azi-
muthal coverage because these stations often fail to record
high-quality signals of small events. LocNO’s ability to provide
stable locations under these conditions demonstrates its poten-
tial as a standard component for modern catalog-building
pipelines.

A training dataset designed for locating out-of-network
earthquakes is particularly valuable for monitoring seismic
activity in offshore regions. Using the MTJ region as an exam-
ple, frequent offshore earthquakes near the Mendocino trans-
form fault pose significant risks to surrounding communities.

However, the inherent challenge of locating these out-of-
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network events stems from the limited number of stations in
marine environments. Rather than incorporating historical
seismicity as a prior in a Bayesian framework (Williamson
et al., 2023), we leverage past seismic data to construct a com-
prehensive training dataset and directly train a deep learning
model to locate these offshore events using full-waveform
information. Our results indicate that the challenge of locating
out-of-network earthquakes can be effectively mitigated
through advanced deep learning methods, provided that a suf-
ficiently representative training dataset is available.

As a data-driven approach, LocNO relies on a well-curated
training dataset with diverse earthquake locations across the
monitoring region, ensuring comprehensive wavepath cover-
age in the MTJ area and enhancing the model’s generalization
ability to new earthquakes in this region. By leveraging this
dataset, the model directly determines earthquake source loca-
tions from waveform data without an explicit velocity model.
Although LocNO does not require an explicit velocity model
during inference, the training labels come from catalog loca-
tions that were determined using a velocity model. As a result,
the model is still influenced by the assumptions of that velocity
model. For example, the deep learning model that directly
maps waveforms to source parameters may encounter chal-
lenges when applied to regions with velocity distributions that
significantly differ from those represented in the training data-
set. This limitation highlights the critical need to construct
training datasets that capture the geological and tectonic
diversity of the target region. Therefore, leveraging historical
seismicity data remains an effective strategy for accurately
and efficiently locating newly detected earthquakes within
the studied area.

Traditional template matching methods locate earthquakes
by cross-correlating new waveforms against a library of known
events, effectively detecting and refining the locations of
repeating earthquakes with similar waveforms (Waldhauser
and Ellsworth, 2000; Shelly et al., 2006, 2007). In contrast,
LocNO does not rely on waveform similarity between training
and testing events. Although trained on catalog events, its goal
is to learn a functional mapping from waveforms to source
locations that generalizes to new events with previously unseen
waveform characteristics. This generalization capability is
analogous to deep learning-based phase pickers such as
PhaseNet (Zhu and Beroza, 2019) and PhaseNO (Sun et al.,
2023), which can pick phases for earthquakes beyond the train-
ing sets. Moreover, while template matching is mainly used for
event detection and relocation through cross correlation,
LocNO directly infers absolute source locations from multista-
tion waveforms. Unlike double-difference (DD) methods that
require high waveform similarity, LocNO is not limited to
repeated events and is thus applicable to general earthquake
location tasks.

Despite the encouraging performance of LocNO in out-of-
network earthquake location, significant errors are observed
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for events with poor station geometry, such as clusters of sta-
tions. Although the location errors for out-of-network events
can be substantial, the results may still be useful for distin-
guishing between the in-network and the out-of-network
(2025).
Furthermore, it is important to emphasize that simply increas-

events, as demonstrated in Annunziata et al
ing the number of stations does not necessarily improve loca-
tion accuracy if the added stations do not enhance the overall
station coverage by reducing the primary azimuthal gap
(Fig. 7), particularly for out-of-network earthquakes.

To overcome the challenge of training the LocNO model in
low seismicity areas, we may generate a synthetic training data-
set to supplement the real-world dataset (Leong and Zhu,
2024). By sampling a known 3D velocity model with various
earthquake locations, a comprehensive training dataset could
be synthesized through seismic forward modeling to compen-
sate for the scarcity of observed data. Moreover, the synthetic
data may be further augmented using a generative model
trained to map event locations to seismograms that exhibit the
characteristics of the field data for a specific area (Spurio
Mancini et al., 2021).

The key question when training with synthetic data is how
accurate and realistic the simulations must be to ensure that
LocNO generalizes well to real-world observations. This strat-
egy may be particularly effective in regions where a smooth
velocity model sufficiently captures long-distance wave propa-
gation. However, in local areas with significant scattering and
small-scale heterogeneity, a high-resolution velocity model
may be necessary to simulate seismic wavefields more accu-
rately and ensure that the synthetic data can effectively
enhance the model’s performance. Because of the lack of
high-resolution velocity models, synthetic data are typically
inaccurate at higher frequencies. In this study, LocNO demon-
strates the ability to infer earthquake source locations with an
uncertainty of ~10 km in the MT] region using data filtered in
the 1-10 Hz frequency band. Although limiting the input to
the 1-5 Hz band may exclude some informative high-fre-
quency components, the resulting degradation in performance
is relatively minor (Table 2). Most regional velocity models are
better suited for simulating low-frequency waveforms, so sim-
ulating data in the 1-5 Hz band offers a practical compromise
between accuracy and generalizability when training LocNO
with synthetic waveform datasets.

Low SNR remains a significant challenge for accurate earth-
quake location. Traditional travel-time-based methods can
sometimes provide reliable solutions for low SNR events when
combined with robust phase pickers. In particular, deep-learn-
ing-based pickers such as PhaseNO have demonstrated their
ability to extract P- and S-wave arrivals even from noisy wave-
forms, enabling subsequent location using conventional travel-
time-based methods (Sun et al., 2023). However, when the seis-
mic network has poor geometry, such as sparse station cover-
age or large azimuthal gaps, these travel-time-based location
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methods may still produce unstable or biased estimates despite
having accurate picks. This limitation is particularly evident for
the out-of-network events, as demonstrated in the 22
September 2017 M,, 5.7 offshore earthquake sequence. In con-
trast, LocNO is trained on out-of-network examples that reflect
these geometric challenges, allowing it to learn and correct for
spatial biases using full-waveform information. To further
improve LocNO’s robustness for low SNR events, waveform
denoising techniques could be incorporated before model
inference. This approach could enhance the clarity of input sig-
nals, which is commonly employed in seismic full-waveform
inversion. Overall, while travel-time-based methods remain
effective in well-instrumented regions, waveform-based
approaches like LocNO offer distinct advantages for events
in challenging network settings.

The DD earthquake location is well known for achieving
high relative accuracy and reduced sensitivity to the velocity
model errors because it minimizes travel time differences
between pairs of events recorded at common stations
(Waldhauser and Ellsworth, 2000). However, its effectiveness
is inherently constrained by the geometry of the seismic network
(Waldhauser, 2001). In sparse or uneven station distributions, or
when the azimuthal coverage is poor, DD methods cannot effec-
tively constrain the absolute locations of event clusters, often
resulting in systematic spatial drift. This limitation arises
because DD techniques only update relative positions between
events and cannot correct the initial absolute location of event
clusters, which is typically determined before starting the DD
relocation. Furthermore, constructing a sufficient number of
strongly linked event pairs, typically defined by eight or more
high-quality observations, is difficult in networks with limited
station coverage. Consequently, the benefits of DD approaches
diminish significantly for isolated earthquakes or in regions
where stations are few and unevenly distributed.

In addition to algorithmic advancements such as the devel-
opment of LocNO, a complementary strategy to improve the
earthquake location accuracy in offshore or out-of-network
regions is to enhance the seismic network by adding more sta-
tions and increasing the azimuthal coverage. The use of distrib-
uted acoustic sensing (DAS) on submarine fiber-optic cables
(Gou et al., 2025) and deployments of ocean-bottom seismom-
eters (OBSs; Toomey et al., 2014; Alongi et al., 2021; Morton
et al., 2023) have shown promising results in extending the
seismic monitoring capabilities into oceanic regions. These off-
shore instruments significantly improve the azimuthal cover-
age and reduce the path-length uncertainties, which are critical
for accurate hypocenter determination. However, DAS deploy-
ment in the MT] region is currently limited by the availability
of dark fiber infrastructure, and OBS deployments are typically
temporary, providing improved hypocenter constraints only
during active recording periods. Integrating offshore deploy-
ments with LocNO may further improve location accuracy,
but this requires careful evaluation in future studies.
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CONCLUSION

This study proposes the LocNO, a deep learning framework for
earthquake location using full waveforms recorded by multiple
stations with arbitrary network geometry. Its application to off-
shore earthquakes in the MT]J region highlights the effective-
ness of LocNO in addressing the persistent challenges of
locating offshore events using onshore seismic stations. By uti-
lizing operator learning frameworks and full-waveform seismic
data, LocNO effectively captures spatiotemporal relationships
in seismic signals, enabling robust performance even in regions
with sparse monitoring networks. Quantitatively, LocNO
achieves mean absolute errors of ~10 km in horizontal location
and 4 km in depth when compared to the NCEDC catalog. The
combined use of PhaseNO for earthquake detection and
LocNO for location provides a practical path to study MT]
seismotectonics with deep-learning-enhanced catalogs, per-
mitting reliable locations of newly detected small offshore
events even when only a few onshore stations record them.
Future research could enhance the training dataset with syn-
thetic data to address low-seismicity regions, extend LocNO’s
application to other tectonic settings, and integrate it into real-
time monitoring systems. These efforts would further increase
LocNO’s potential for mitigating seismic risks and improving
regional earthquake monitoring in poorly instrumented areas.

DATA AND RESOURCES

The Python package location neural operator (LocNO) is available at
https://github.com/sun-hongyu/LocNO. Python code SeismicGNN is
available at doi: 10.6084/m9.figshare.12231077. Detection of events for
22 September 2017 M,, 5.7 earthquake sequence, located 218 km west
of Ferndale, California, was performed using the Python package phase
neural operator (PhaseNO) (Sun et al, 2023), available at https:/
github.com/sun-hongyu/PhaseNO. The case study used stations from
the BK, NC, and PB networks. Station codes include BK.JCC.HH,
NC.GHO.EH, NC.GNA.EH, NC.GTC.EH, NCKBS.EH, NC.KCPB.HH,
NC.KCREH, NC.KCS.EH, NC.KCT.HH, NC.KHMB.HH,
NCKMPB.HH, NCKMRHH, NCKRMBHH, NCKRP.HH,
NC.KSM.EH, NC.KSXB.HH, PB.B045.EH, PB.B046.EH, PB.B047.EH,
PB.B049.EH, PB.B932.EH, PB.B933.EH, PBB934.EH, and
PB.B935.EH. Waveform data, metadata, and data products for this study
were accessed through the Northern California Earthquake Data Center,
doi: 10.7932/NCEDC. All websites were last accessed in September 2025.
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