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Beyond Correlations: Deep Learning for
Seismic Interferometry
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Abstract—Passive seismic interferometry (SI) is a vastly gen-
eralized blind deconvolution question, where different paths
through the Earth correspond to different channels called
Green’s functions; the sources are completely incoherent and
not shared by the channels, and the question is to estimate
paths (channels) that are not present in the dataset. Seismic
interferometry, turning noise to signal, has numerous applica-
tions, from monitoring industrial activities to crustal structure
investigation. No standard method of signal processing will solve
seismic interferometry. Instead, domain scientists resort to a
simple cross-correlation operation, a.k.a. correlogram, which
can retrieve the Green’s function directly, but only under
restrictive assumptions of ergodicity (energy equipartitioning) of
the random process generating the seismic source. However, in
practice, correlograms are not equal to the empirical Green’s
function, because these assumptions are generally far from being
satisfied in realistic situations. In the framework of supervised
learning, we propose to train deep neural networks to overcome
two limitations of correlation-based SI: the temporal limitation
of passive recordings, and the spatial limitation of the ran-
dom source distribution. Deep neural networks are trained to
implicitly find the relationship between the empirical Green’s
functions and the correlograms and then used to extract the
correct Green’s functions from ambient noise. The input of
the network is correlograms (a virtual shot gather) and the
desired output is the empirical Green’s function (the active shot
gather). The neural network can often retrieve Green’s functions
from five-minute passive recordings with acceptable accuracy
in our synthetic example. Although an exact estimation of the
source locations may not be necessary, a prior knowledge of
the source directionality (through a preliminary beamforming
step) is helpful when training the neural network to mitigate the
challenges associated with inhomogeneous source distributions. In
this work, all the numerical examples are based on the retrieval
of P-wave reflections in the exploration scale, and are conducted
on synthetic data. We use a modified ResNet in our numerical
experiments.

Index Terms—Ambient noise, deep learning, Green’s function
retrieval, seismic imaging, seismic interferometry (SI).

I. INTRODUCTION

SEISMIC interferometry (SI) generally refers to the process
of generating new seismic responses (Green’s function
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retrieval) by correlating seismic noise recordings of differ-
ent receivers [1], [2]. Since [3] proposed to use statistical
properties of seismic noise to infer the Earth structure, SI
applications have ranged from crust and upper-mantle structure
investigation [4], to natural resources exploration, to urban
monitoring.

Claerbout [5] pioneered the SI algorithm by autocorre-
lating a transmission seismogram to retrieve its reflection.
Subsequently, the principle of correlation-based SI has been
derived via normal-mode summation [6], time reversal [7],
representation theorems [8] and stationary phase analysis [9]
by assuming that the ambient wavefield is equipartitioned.

The challenges of correlation-based SI mainly concern
extending the theory to account for real-world noise and media
[10]–[12]. A correct retrieval of Green’s functions relies on
the prerequisite of uncorrelated and homogeneously distributed
noise sources in media without intrinsic losses. A strong lo-
calized source outside the stationary zones can cause spurious
arrivals resulting from imperfect cancellations of nonphysical
amplitudes [13]. However, natural noise sources are always
correlated and cannot illuminate the region of interest from
all sides equally. Also, seismic waves in real-world media
can suffer from geometrical spreading and attenuation (hence
lowered amplitudes). In addition, there is the issue of statistical
stability – large deviations in the case of small sample size
(here, short recording window).

It is a major challenge to derive methods to obtain approxi-
mately correct Green’s functions from the imperfect situations
of SI. The statistical stability relative to the statistics of the
noise sources can be controlled through the choice of a long
enough recording time window or by stacking techniques,
e.g., months or years in regional scale [4] and hours or
days in exploration scale [14], [15]. However, the usage of
long noise recording limits the application of SI for real-time
monitoring of processes in the Earth’s subsurface. In addition,
to enhance signal-to-noise ratio (SNR), it is always neces-
sary to perform time-domain weighting, frequency-domain
weighting and spatial averaging. Even so, the results rely
on subjective evaluations on the acceptance or rejection of
a cross correlation. Thus, despite dedicated data processing,
SI techniques still run into issues limiting their application for
imaging or monitoring the subsurface.

In addition to cross-correlations, alternative methods for SI
include: deconvolution [16], multi-dimension deconvolution
[17], cross-coherence [18] and coda wave interferometry [19],
[20]. Although interferometry by deconvolution removes the
source signature by means of spectral division, it suffers from
the same problems as correlation-based interferometry in terms
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of source distribution and recording length (see supplementary
information I). More robust preprocessing and postprocessing
methods are proposed to enhance the reliability of Green’s
function extraction from cross-correlation, e.g., directional
balancing [21] and iterative denoising [22].

Deep learning [23] enables neural networks with multiple
layers to discover intricate structure from large data sets and
learn high-level representations for reasonable prediction. Over
the past few years, it was used in geophysics for solving
inverse problems [24], [25], low frequency extrapolation [26],
[27], seismic data denoising [28]–[30] and velocity model
building [31]–[33].

In passive data processing, researchers have leveraged ma-
chine learning in different ways. [34] use deep learning to
measure the time lapse between two correlograms. [35] design
an autoencoder for time-lapse monitoring with passive seismic
data. [36] train an autoencoder to denoise noise correlation
functions with a time resolution of 20 minutes. [37] extract
dispersion curves from ambient noise correlations using deep
learning. As for unsupervised learning, [38] use a clustering
method to improve the quality of correlograms calulated
via deconvolution. [39] use unsupervised deep learning to
distinguish between earthquake signals and background noises.
[40]–[42] apply machine learning for signal detection from
ambient noise under a classification framework.

To handle the practical challenges in SI applications, we
propose to use deep learning in a supervised manner to extract
correct Green’s functions from ambient noise wavefields with
limited recording duration and localized source distribution.
We focus on the Green’s function retrieval in the exploration
scale. In particular, we aim to retrieve reflected waves from
ambient noise that agree with (here, simulated) active surveys.
Direct mapping from noise to signal is optional but requires a
careful design of the neural network. To relieve the difficulty
of learning, we use raw correlograms as input to the network,
and train the neural networks to output reflections, i.e., seismic
events from an active source.

Although they were originally proposed in the computer
vision community, many deep-learning architectures, such as
ResNet [43], U-Net [44], DnCNN [45], VAE [46], DCGANs
[47], Pix2Pix [48], CycleGAN [49], etc., have been success-
fully applied to solve geophysical problems. Here we consider
the mapping from a virtual shot gather to an active shot gather
as an image-to-image translation problem. Unlike our previous
work [50], we choose to use convolutional neural networks
with residual learning blocks (ResNet, [43]) as the tool for its
better accuracy and efficiency (see supplementary information
II). In addition, we make problem-specific modification to
ResNet and use a wide kernel (11× 11) on all convolutional
layers to enhance its performance on seismic shot gathers.
We train the neural network in a supervised setting with an
L1 loss function between the output and the label. Numerical
examples have shown that deep learning with proper setting
can overcome the temporal limitation of noise recording length
and the spatial limitation of source distribution in correlation-
based SI. We believe that seismic imaging with deep-learning-
retrieved reflections from short noise recordings, and less-than-
ideal source characteristics, offers an interesting new point of

view for real-time monitoring.
The organization of this paper is as follows. We first present

the basics of correlation-based SI and then propose to improve
SI results using deep learning technologies. In the section
of numerical results, we show the ability of deep neural
networks to retrieve correct Green’s functions from short noise
recordings and directional wavefields (inhomogeneous source
distribution). We further investigate the generalizability of the
neural network on different geological structures. Finally, we
discuss the challenges associated with field-data application,
and the generalization of this method to diffusive media and
regional scale. We also explain the limitations inherent to deep
learning.

II. DATA AND METHOD

A. Review of correlation-based interferometry

Correlation-based SI retrieves Green’s functions from N
available passive measurements uobs(xA, t) and uobs(xB , t)
using the relation [2], [8]:

{G(xA, xB , t) +G(xA, xB ,−t)} ∗ S(t)

≈
N∑
i

uiobs(xA,−t) ∗ uiobs(xB , t).
(1)

Here, G(xA, xB ,±t) is the Green’s function between positions
xA and xB in a homogeneous lossless acoustic medium. ±t
denotes the causal and acausal parts of the Green’s function.
S(t) stands for the autocorrelation of the noise sources, and
the asterisk denotes convolution. Stacking the cross-correlation
over N available measurements improves the statistical stabil-
ity. This means that long recording time is necessary for a
good retrieval of Green’s functions.

The derivation of this relation relies on the assumption
that ambient noise sources are uncorrelated and surround the
area of interest from all directions. However, correlograms are
not equal to Green’s functions when the assumption is not
fullfilled. In addition to an amplitude error, artifacts will be
introduced in the reconstructed signal due to the fact that the
source locations do not constitute a closed surface [9], [51],
[52].

By correlating the passive recording of each receiver with
that of the reference trace, a virtual common-shot gather
can be obtained where the virtual source is located at the
receiver position of the reference trace. To enhance the SNR,
the causal and acausal parts are summed. The final result
is the Green’s function convolved with the autocorrelation
of the noise sources S(t). The imprint of source can be
removed by deconvolution with a wavelet extracted from the
autocorrelation trace using a narrow window around zero time
[15].

B. Deep learning for seismic interferometry

We use deep learning to extract correct Green’s func-
tions from correlograms in a supervised manner to overcome
the practical challenges of SI in imperfect situations: short
recording time and inhomogeneous source distribution. The
raw input x of the neural network is virtual shot gathers
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(a) (b)

(c) (d)

Fig. 1. Training and test models: (a) Overthrust test model. (b) One training
model extacted from the 3D Overthrust model. In total, we have 16 training
models. (c) Average SSIM index between the test models with all the training
models. Black and red points show the comparison of the whole overthrust
test model and the overthrust test model with a depth of less than 3.6 km,
respectively. Blue points denote the comparsion of the salt test model. (d) Salt
test model.

(correlograms) and the active shot gathers serve as the desired
output (label y).

1) Training and test data sets: In this work, we collect the
training data set from a synthetic data set simulated on several
2D models extracted from the 3D SEG/EAGE Overthrust
Model [53]. In total, we have 16 training models. Each model
has a dimension of 10 km in the horizontal direction and 4.68
km in the vertical direction. To evaluate the performance of the
neural network with a test data set, we extract one 2D model
from the 3D SEG/EAGE Overthrust Model with structures
different from the training models and use it as an overthrust
test model (Fig. 1(a)) We use the structural similarity image
metric (SSIM, [54]) to measure the similarity between a test
model and a training model. Although it could be negative,
the SSIM formula typically computes a continuous number
between 0.0 and 1.0, where 1.0 corresponds to identical
images and 0.0 corresponds to completely dissimilar images.
Supplementary Fig. 1 shows the map of SSIM index between
test models and the training model in Fig. 1(b). The average
SSIM index between the overthrust test model and all the
training models is 0.38 for the whole model and 0.23 for
the model without the same high velocity layer below 3.6
km (Fig. 1(c)). The low similarity guarantees the suitability
of the test dataset simulated on the overthrust test model
for evaluating the trained neural networks. Furthermore, we
test the neural network on a 2D salt test model (Fig. 1(d))
extracted from the 3D SEG/EAGE Salt Model to understand
its generalizability over totally different geological structures.
Another salt model (Supplementary Fig. 2) serves as the
validation model.

We follow the method in [55] to simulate the ambient noise
recordings. The wavefields are simulated by solving the 2D
acoustic wave equation in the time domain using the finite
difference method. The density of the training and test models
are provided based on the P-wave velocity using the Gardner’s
relation [56]. A perfectly matched layer (PML) is applied to
the bottom, right and left boundary of each model, while a free

(a)

(b)

Fig. 2. Time series and its amplitude spectrum of two noise sources. The
amplitude and duration of these noise sources are random, but the maximum
frequency is 12 Hz. They are randomly triggered at random locations during
the total modeling time.

(a) (b)

Fig. 3. Locations of the 1000 random noise sources in the rectangular region
of (a) 200 m ≤ x ≤ 9800 m and 1000 m ≤ z ≤ 3000 m, and (b) 5000 m
≤ x ≤ 8000 m and 2000 m ≤ z ≤ 3000 m on the test model. In (a), the
noise sources are assumed to be uniformly distributed in the subsurface. In
(b), the noise sources are only localized in one part of the subsurface.

surface condition is applied to the top of the model. With a
sampling rate of 8 ms, we record 300 s passive data on the test
model and 300 s passive data on the training model. During
the total recording time, 1000 noise sources are triggered with
random starting time at random locations. Fig. 2 shows the
amplitude spectra and the time series of two random noise
sources. The amplitude and duration of these noise sources
are random, but the maximum frequency of each noise source
is 12 Hz. Here we choose to work on relatively low frequency
band for two reasons: (1) Real ambient noise used for seismic
interferometry generally shows low frequency characteristics
[15], [18], [57]. (2) To efficiently synthesize training data sets,
we use a relatively large grid spacing in forward modeling, so
lower frequencies are preferred to avoid numerical dispersion.

We consider two source configurations to simulate the test
datasets on the test model. In one case, the 1000 random
noise sources are placed in the rectangular region of 200 m
≤ x ≤ 9800 m and 1000 m ≤ z ≤ 3000 m (Fig. 3(a)).
The noise sources are assumed to be uniformly distributed
in the subsurface. In the other case, the noise sources are
only localized in one part of the subsurface. The 1000 random
noise sources are placed in the rectangular region of 5000 m
≤ x ≤ 8000 m and 2000 m ≤ z ≤ 3000 m (Fig. 3(b)). To
reduce the generalization gap, an ideal training data set should
have the same source distribution as the test data set. However,
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(a) (b) (c)

Fig. 4. Comparison of virtual shot gathers (passive correlograms) by cor-
relating noise recordings from (a) homogeneously and (b) inhomogeneously
distributed sources, and (c) the active shot gather. The reference trace of the
virtual shot gathers is located at x = 5000 m, which is also the position of
the active source. Due to the short duration of the ambient noise, the virtual
shot gather only shows good agreement with the active one with two-way
traveltime up to 2 s at the near offset. Traces at the far offset have extremely
low SNR and are very difficult to distinguish between physical events and
noise. In (b), due to the inhomogeneously distributed sources, the virtual shot
gather is dominated by the direction of the energy flux. A limited number of
physical events are visible on the virtual shot gather.

the source configuration of the test dataset is usually unknown
in practice. Therefore, we determine the source directionality
of the passive recordings using a beamforming method, and
use the estimated source locations to simulate the training
datasets when the sources are localized in the subsurface.

Supplementary Fig. 3 shows 5 s passive recording measured
by 251 receivers evenly placed on the top of the overthrust
test model. The first receiver is located at 520 m and the
interval between two receivers is 40 m. Fig. 4(a) and Fig. 4(b)
show the virtual shot gather calculated by cross-correlating the
noise recordings with the reference trace located at x = 5000
m. Here we cut the 5-minute noise recordings into five 1-
minute time series without overlap (i.e., N = 5). Then the
five measurements are stacked after cross-correlation for the
virtual shot gathers. Fig. 4(c) shows the active shot gather
where the active source is located at x = 5000 m on the test
model. Throughout the paper, we use a Ricker wavelet with
dominant frequency of 6 Hz to serve as the active source. The
peak of the wavelet is placed at t = 0 s to make sure that the
phases of the active shot gathers coincide with signals on the
virtual shot gathers. In addition, both the active and virtual
shot gathers have roughly the same maximum frequency.

2) Neural network architecture: We formulate reflection
retrieval from ambient noise as an image-to-image translation
problem using fully convolutional neural networks. In our
application, the input domain contains 2D images of the virtual
shot gather and the target domain is a collection of 2D images
of the active shot gather. We train the neural network using a
training set of aligned image pairs. Both input x and output y
have equivalent dimensions of nt×ntr where nt and ntr are
the numbers of recording points and receivers, respectively.
The desired output is the active shot gather with the same
shot location as the input x.

Fig. 5 summarizes the neural network architecture (example
for nt = 496 and ntr = 224). The deep learning model

Fig. 5. Deep learning architecture (example for nt = 496 and ntr = 224).
The network takes a virtual shot gather as input and transfers it to match
the active shot gather with the same shot location. Each box between the
input and output corresponds to a multichannel feature map. The operation
on each layer is listed at the bottom of the architecture. The dimension of
each feature map and the number of channels are provided around the box.
For example, 224× 496× 64 denotes that there are 64 feature maps with a
size of 224× 496. The arrows denote the flow of different operations.

sequentially contains one convolutional block, two downsamp-
ing blocks, six residual blocks, two upsampling blocks and
another convolutional block as the output layer. Instead of
pooling layers, we use a convolution with a stride of two
for downsamping. Likewise, the upsampling block employs
a transposed convolutional layer with a stride of two. The
kernel size is the same for all the convolutional layers and
we have experimented with a kernel size of 3× 3, 7× 7 and
11×11. In addtion, we pad the input tensors by reflecting the
input values across the border axis (Reflection Padding) before
the convolution operation. We use instance normalization [58]
following all the convolutional layers except the last one. We
use a rectified linear unit (ReLU) for activation layers, except
the last layer where a hyperbolic tangent function (Tanh) is
used to output the retrieved shot gathers in [−1, 1].

Building a deep learning model with the residual block [43]
is proposed to ease the training of networks. Each residual
block has two connections from its input, one going through a
series of operations, such as convolutions, normalizations and
activation functions, and the other simply performing identity
mapping, and their outputs are added together as the input of
the next residual block. The identity mapping between layers
of the network allows large sections to be skipped if needed.
Although the residual framework is expected to gain accuracy
from considerably increased depth, we experimentally find that
9 residual blocks provide similar performance to 6 blocks, but
3 residual blocks are not sufficient.

3) Loss function for training: We train the neural network
in a supervised fashion and let the output of the neural network
be near the ground truth in an L1 sense. Here L1 is preferable
as it encourages less blurring than L2 for the image-to-image
translation problem [48]. The supervised loss can be expressed
as

LL1
(Nθ) = Exvp(x),yvp(y)[‖Nθ(x)− y‖1], (2)

where Nθ denotes the neural network parameterized by θ. x v



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS v

p(x) and y v p(y) are the data distribution. Then, our final
objective is

N∗
θ = argmin

Nθ

LL1
(Nθ). (3)

During training, we use adaptive moment estimation (Adam,
[59]) to update Nθ with a mini-batch of one. The learning

rate is set as 2× 10−5.

III. NUMERICAL EXPERIMENTS

In this section, we demonstrate the performance of the
neural network for reflection retrieval in two imperfect sit-
uations of correlation-based SI: short recording length and
inhomogeneous source distribution.

In the first case, we aim to retrieve reflections from short
passive recordings for the application of SI for real-time
monitoring of the subsurface. The total length is only 300
s for passive recordings in the training set and 300 s for the
test set. In this case, the noise sources are assumed to be
uniformly distributed in the subsurface (Fig. 3(a)). Fig. 4(a)
and Fig. 4(c) compare the retrieved common-shot gather and
the active-source common-shot gather where the virtual/active
source is located at x = 5000 m. Due to the short recording
time, the virtual shot gather only shows good agreement with
the active one with two-way traveltime up to 2 s at the near
offsets. Traces at far offsets have extremely low SNR so that
physical events and noise are indistinguishable.

The second case aims to retrieve correct reflections under
the imperfect condition of inhomogeneous source distribution.
In addition to the same short recording length as the first case,
the noise sources are localized in the small rectangular region
of 5000 m ≤ x ≤ 8000 m and 2000 m ≤ z ≤ 3000 m
(Fig. 3(b)) and, thus, not optimal for the correlation-based SI.
Comparing with the active shot gather (Fig. 4(c)), the virtual
shot gather (Fig. 4(b)) is dominated by the direction of the
energy flux. A limited number of physical events are visible
on the virtual shot gather retrieved by correlation, due to the
directional wavefield.

The subsequent preprocessing steps are followed to generate
each pair of images in the training and test data sets:

• The input x is a virtual short gather (correlograms);
• The desired output y (label) is the active shot gather

generated by placing an active source at the position of
the virtual source. Here we use a Ricker wavelet with 6
Hz dominate frequency and 12 Hz maximum frequency
as the active source;

• Both the active and virtual shot gathers should be band-
pass filtered to equalize the frequency components. Here
both the active and virtual shot gathers have roughly the
same frequency components so we omit this step;

• We taper the shot gathers with zero at the beginning
of each time series using a time window of 0.16 s to
remove the extreme large amplitude at the positions of
the virtual/active sources;

• We normalize the input x and label y to [−1, 1];
After preprocessing, we use each pair of the virtual and

active shot gathers with the same shot location as the 2D

images for the input and target of the neural network. Specif-
ically, with the time dimension of nt = 496 and the distance
dimension of ntr = 224, the shot gather to be processed
is 3.96 s in time and 8920m in distance, respectively. As a
result, for each case, we have a total of 3584 training image
pairs (16 training models × 224 shots per model), 448 test
image pairs (2 test models × 224 shots per model) and 224
validation image pairs (1 validation models × 224 shots per
model). Furthermore, we retain the effect of the wavelet on the
virtual and active shot gathers during training. Consequently,
deconvolution of the source wavelet from the prediction of
the neural networks is required to retrieve Green’s functions
from reflections. The source wavelet can be approximated by
the Ricker wavelet used in the simulation of the active-source
common shot gather.

A. Case 1: near real-time recording length

1) Results on the overthrust test model: We evaluate the
performance of the neural network (NN) using the training
and test data sets simulated under the case of near real-
time recording length. In this case, we use the same source
configurations (evenly distributed) to simulate the passive
recordings on both training and test models. Supplementary
Fig. 4 shows the learning curve of the neural network with a
kernel size of 11×11 after training with five epochs. According
to the performance on the validation data set, we choose to
use the neural network trained after four epochs to predict the
resulting shot gathers.

Fig. 6 compares the virtual shot gather, NN predicted and
active shot gather where the virtual or active shot is located
at x = 6 km on the test model. Overall, the predicted events
show good coherence among different traces. Compared with
the correlograms in the virtual shot gather, the neural network
removes most of the spurious events and correlation noise.
Although events at earlier arrival time are more accurate than
those at the later arrival time, we notice that the NN prediction
is quite comparable to the active shot gather. The evaluation
metrics (SSIM and MAE) between the predicted and active
shot gathers are improved compared with those between the
virtual and active shot gathers (Table I).

A crucial hyperparameter that affects the performance is the
kernel size of the convolutional operator. Here we compare
the resulting shot gathers predicted by the neural network
with a kernal size of 3 × 3 (Fig. 6(c)), 7 × 7 (Fig. 6(d)) and
11 × 11 (Fig. 6(e)). The comparision shows that the neural
network with a larger kernel size provides better results, due
to a larger receptive field [60]. However, a large kernel size
also requires increasing memory and computing cost, so we
end up choosing a kernel size of 11 × 11 in the following
work.

Fig. 7 compares the traces extracted from the virtual shot
gather, the resulting shot gather predicted by the neural
network with a kernel size of 11 × 11, and the active shot
gather in Fig. 6. Five traces located at 3, 4, 5, 6 and 7
km on the overthrust test model are plotted from each shot
gather. Although minor event discrepancy exists between the
predicted and the active shot gather, we find good agreement
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(a) (b)

(c) (d)

(e)

Fig. 6. Comparison of shot gathers under the case of near real-time recording
length. (a) Virtual shot gather. (b) Active shot gather. The resulting shot
gathers predicted by the neural network with a kernel size of (c) 3 × 3,
(d) 7× 7 and (e) 11× 11. The virtual/active source is located at x = 6 km
on the overthrust test model.

for most events. Compared with the traces on the passive
correlograms, NN prediction has more visible physical events
and is much cleaner. However, due to the larger geometric
spreading of body waves, events at larger offet (distance
between source and receiver) have lower SNR and show
increasing prediction errors.

2) Seismic imaging: We migrate the virtual, predicted and
active shot gathers to evaluate the performance of the passive
recordings for seismic imaging. The normalized virtual and
active shot gathers as well as the prediction without post-
processing are directly used as the input for migration, because
the overall amplitude of the shot gathers is not meaningful for
seismic imaging purpose. 112 shots with an interval of 80 m
are migrated using the phase shift plus interpolation (PSPI)
method [61] shot-by-shot and then summed up for the final
imaging results. The migration input model is a smoothing
version of the overthrust test model (Supplementary Fig. 5 in
the supplementary file). Any details below 1 km are removed

Fig. 7. Comparison of individual traces from the overthrust test model among
the virtual (passive correlograms), active and resulting shot gathers predicted
by the neural network with a kernel size of 11 × 11, under the case of
near real-time recording length. The locations of the source and receiver are,
respectively, labeled on the top of each panel. The accuracy decreases with
increasing distance between source and receiver.

TABLE I
EVALUATION METRICS BETWEEN THE LISTED AND ACTIVE SHOT

GATHERS ON THE overthrust test modela

shot gather SSIM MAE
singleb averagec singleb averagec

passive (virtual) 0.192 0.159 0.089 0.103
predicted (case 1) 0.459 0.460 0.048 0.050
predicted (case 1, noisy label) 0.421 0.419 0.051 0.053
predicted (case 2, similar direction) 0.420 0.396 0.056 0.062
predicted (case 2, different direction) 0.395 0.374 0.060 0.064

a All the resulting shot gathers are predicted from the neural network with a
kernel size of 11× 11.
b This column shows the metric of the single shot located at x = 6 km.
c This column shows the average of all shot gathers.

from the migration input model.
Fig. 8 compares the prestack depth migration results using

the virtual, predicted, and active shot gathers. The imaging
result using the predicted shot gathers is comparable with that
using the active shot gathers and is much cleaner compared
to that using the raw virtual shot gathers. Note that reflectors
below 3.5 km on the imaging results are the artifacts due to
multiples since they are not removed from the shot gathers
before migraion. However, the imaging result using predicted
gathers shows good agreement with that using active shot gath-
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(a)

(b)

(c)

Fig. 8. Comparison of prestack depth migration results using (a) virtual, (b)
predicted, and (c) active shot gathers. The passive recordings are simulated
under the case of near real-time recording length. (The data comparison for
one shot is plotted in Fig. 6.) The imaging result using the predicted shot
gathers is comparable with that using the active shot gathers and is much less
noisy than that using the raw virtual shot gathers.

ers. The similar pattern indicates that the neural network learns
the mapping from virtual to active shot gathers successfully.

3) Robustness with random noise on labels: To evaluate
the robustness of the method with random noise on labels,
we add Gaussian white noise with mean µ = 0 and standard
deviation σ = 0.5 to the active shot gathers in the training
data set. For comparison, we also add the same amount of
random noise to the active shot gather in the test data set
(Fig. 9(a)). Fig. 9(b) and Table I show the results predicted
by the neural network with a kernel size of 11×11. Although
discontinuity of events at far offset exists, the neural network
is robust to random noise. However, the effect of other types
of noise remains to be investigated [62], [63].

B. Case 2: inhomogeneous source distribution

We then evaluate the reliability of the neural networks to
overcome the spatial limitation on noise source distribution
by training the neural network with another training and test

(a) (b)

Fig. 9. Robustness when training with noisy labels. Comparison between (a)
noisy active shot gather located at 6 km on the overthrust test model and (b)
resulting shot gather predicted by the neural network with a kernel size of
11× 11. The neural network is trained with active shot gathers contaminated
with Gaussian white noise with mean µ = 0 and standard deviation σ = 0.5.

data sets simulated under the case of inhomogeneous source
distribution. In this case, the ambient noise recordings are
dominated by the flux coming from the direction of noise
sources. As seen in the comparison between Fig. 4(b) and
Fig. 4(c), the virtual shot gather from cross correlation shows
strong artifacts along with the direction of the energy flux.
Although the special conditions of noise sources are necessary
for correlation-based SI to be applicable, they are not neces-
sary in order to have a relation between the Greens function
and the cross correlation of ambient noise recordings [64].
The neural networks with proper setup can find this hidden
relationship after being trained to extract Green’s functions
from correlograms based on events from an active survey.

1) Beamforming for source directionality: When the source
distribution is inhomogeneous, the prior knowledge of the
source location can be estimated from the passive recordings
to collect a training data set with similar source direction as
the test data set. Among the methods to estimate the angle
of arrival, we choose MUltiple SIgnal Classification (MUSIC,
[65]) for its higher resolution compared with classical beam-
forming approaches. This paper only considers the estimation
of a single quantity, the angle of the leading direction of
incidence of the noise, to then inform the training step of
the network by providing noise distributions calibrated on this
single parameter. We do not attempt to match the complete
beam pattern, although this could be an interesting direction
for future research.

On the 2D models with receivers placed on the surface,
the azimuth of the sources relative to the center of the
receiver array ranges from 0◦ to 180◦. To satisfy the far-
field approximation of the beamformer, we use recordings
from only five receivers in the middle of the receiver array
to calculate the pseudo-power of the recordings. Recordings
from 16 s to 64 s are used to estimate the source directionality
in the band of 0.1− 12.0 Hz.

Fig. 10 compares the source location on the test model,
two designed source locations on each training model, and
the corresponding beamforming results. On each model, the
center of the maximum pseudo-power is roughly consistent
with the true angle of the center of the source area indicated
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Comparison of (a) source locations on the test model, (b) first
choice and (c) second choice of source locations on the training model in
Fig. 1(b) for simulating training datasets; (d)-(f) beamforming results of the
noise recordings with source locations in (a)-(c), respectively. The green star
indicates the true angle of the center of the source area in each panel.

by the green star. On the test model, the beamforming result
(Fig. 10(d)) reveals that the source direction ranges from 45◦

to 90◦. The estimated source direction can be used to simulate
a training dataset with a similar source direction as the test
dataset. We randomly place 1100 sources in the rectangular
region of 5330 m ≤ x ≤ 8330 m and 2300 m ≤ z ≤ 3800
m on each training model. The neural network is expected to
achieve good performance when trained using the designed
source configuration (Fig. 10(b)). For comparison, we put
sources in another region of each training model (Fig. 10(c))
to investigate the importance of the prior knowledge of the
source distribution. The beamforming result (Fig. 10(f)) also
shows that the source direction is very different from that on
the test model.

2) Results on the overthrust test model: Supplementary Fig.
6 shows the learning curves of the neural networks trained on
the data set simulated using the estimated source direction
(Fig. 10(b)) and a source direction different from the test
data set (Fig. 10(c)). Fig. 11 compares the virtual, active,
and resulting shot gathers predicted by the neural network
trained with the two source directions in Fig. 10. Since the
noise sources are localized in the subsurface and not suitable
for correlation-based SI, only few physical events can be
seen on the correlograms. However, the prediction generally
shows good agreement with the active shot gather. As we
would expect, the neural network trained under the situation of
inhomogeneous source distribution predicts more errors than
that trained with homogeneous sources. However, compared
with the correlograms in the imperfect case of localized
sources, the neural network still predicts reflections matching
the active shot gather with enough degree of accuracy.

By comparison, Fig. 11(d) shows the results on the test
model when the training data set is simulated without the
prior knowledge of the source locations. Beamforming result
shows that the angle of source direction ranges from 120◦ to
150◦ on the training models, but the angle ranges from 45◦

to 90◦ on the test models. In this case, the neural network
generalizes worse and creates more artifacts on events at far

(a) (b)

(c) (d)

Fig. 11. Comparison of shot gathers under the case of inhomogeneous source
distribution. (a) Virtual shot gather. (b) Active shot gather. The resulting shot
gathers predicted by the neural network with a kernel size of 11× 11 trained
with (c) similar source direction to and (d) very different source direction
from the test data set. The virtual or active source is located at x = 6 km on
the overthrust test model.

offset (Fig. 12). Although it is helpful to train the neural
network with estimated source direction, an exact knowledge
of the source positions may not be necessary regarding the
acceptable degree of mismatch between prediction and its
active reference (Table I).

3) Seismic imaging: Fig. 13 compares the prestack depth
migration results using the passive recordings simulated under
the case of inhomogeneous source distribution. The input
data to migration in Fig. 13(a) are the virtual shot gathers.
In contrast, the input data to migration in Fig. 13(b) and
Fig. 13(c) are predicted by the neural network trained with
the similar source direction (Fig. 10(b)) and the very differ-
ent source direction (Fig. 10(c)), respectively. We see that,
compared with imaging using the virtual shot gathers from
a uniformly distributed sources, imaging with the localized
source distribution is cleaner. However, the left area without
sources is not illuminated and thus is not imaged by either type
of input data. Imaging with the predicted shot gathers from the
similar source direction removes the high frequency artifacts
on the virtual shot gathers. Most reflectors on the image in
Fig. 13(b) are comparable to the one using the active shot
gathers (Fig. 8(c)). However, as we would expect, it is harder
to train the neural network for finding the correct relationship
between the virtual shot gathers and the active ones when
the source is inhomogeneously distributed. As a result, the
imaging quality of Fig. 13(b) is degraded compared with the
imaging in Fig. 8(b).

Fig. 13(c) shows the imaging results using the shot gathers
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(a)

(b)

Fig. 12. Comparison of individual traces from the overthrust test model among
the virtual (passive correlograms), active and resulting shot gathers predicted
by the neural network with a kernel size of 11 × 11, under the case of
inhomogeneous source distribution. (a) Training data set is simulated with a
source direction similar to the estimated source direction from the test data
set. (b) Source direction for the training data set is very different from the
test dataset.

predicted by the neural network trained with the different
source locations (Fig. 10(c)). Although the overall imaging
shows the layered structure of the subsurface, several major
reflectors are curved up on the bottom-left part of the image,
probably due to the imperfect prediction of events at far
offset (Fig. 12(b)). The comparison of the imaging results in
Fig. 13(b) and Fig. 13(c) demonstrates that the prior knowl-
edge of the estimated source locations is helpful when dealing
with passive recordings from a localized source distribution.

C. Generalization from overthrust to salt structures

Finally, we investigate the generalizability of the neural
network from overthrust to salt structures. Fig. 14(a) and 14(b)
show the virtual shot gathers on the salt test model calculated
using ambient noise simulated under the two cases mentioned

(a)

(b)

(c)

Fig. 13. Comparison of prestack depth migration results using passive
recordings simulated under the case of inhomogeneous source distribution.
(a) Migration input data are the virtual shot gathers. (b) Migration input data
are predicted by the neural network trained with the similar source direction.
(One shot of the prediction is plotted in Fig. 11(c).) (c) Migration input data
are predicted by the neural network trained with the very different source
direction. (One shot of the prediction is plotted in Fig. 11(d).)

TABLE II
EVALUATION METRICS BETWEEN THE LISTED AND ACTIVE SHOT

GATHERS ON THE salt test modela

shot gather SSIM MAE
singleb averagec singleb averagec

passive (virtual) 0.152 0.134 0.093 0.093
predicted (case 1) 0.454 0.468 0.045 0.045
predicted (case 1, noisy label) 0.419 0.391 0.048 0.049
predicted (case 2, similar direction) 0.411 0.403 0.058 0.056
predicted (case 2, different direction) 0.417 0.394 0.055 0.055

a All the resulting shot gathers are predicted from the neural network with a
kernel size of 11× 11.
b This column shows the metric of the single shot located at x = 6 km.
c This column shows the average of all shot gathers.

earlier. Fig. 14(c) shows the active shot gather as reference.
Using the virtual shot gather in Fig. 14(a) as the input,
Fig. 14(d) shows the result predicted by the neural network
trained on the data set simulated on the overthrust training



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS x

models under the case of near real-time recording length.
Table II quantitatively measures the accuracy of the resulting
shot gathers. Fig. 14(e) and 14(f) show the results predicted by
the neural network trained under the case of inhomogeneous
source distribution. In either case, although several main
reflectors are well recovered, the direct arrival and events with
small reflection coefficient are poorly retrieved. Furthermore,
seismic imaging results (Supplementary Fig. 7 and 8) show
that the generalization error is increased when training on
the overthrust and testing on the salt model. However, the
neural networks are still able to retrieve reflections with some
degree of accuracy (Table II). To improve the accuracy, we
may collect more training shot gathers simulated with some
salt structures to improve the generalizability, or use transfer
learning strategy.

DISCUSSION

The neural networks trained in the case of near real-
time recording length can be seen as a denoising operator,
which removes correlation noise and spurious events from
correlograms. Hence, reflections with high SNR can be easily
detected and recovered from correlograms by the neural net-
work. In our numerical example, we use only 300 s passive
noise recordings to generate the correlograms by correlation.
The SNR of most physical events is extremely low. However,
our result shows that the neural networks can reconstruct most
of the physical events with satisfactory accuracy. To further
improve the performance of the neural networks, we can use
correlograms from noise measurements with longer recording
time to enhance the SNR of physical events before feeding
into the neural network.

As for the case of inhomogeneous source distribution, the
neural network is not simply a denoising operator, because
few physical events can be seen from the correlograms. The
neural networks are trained to find a hidden relationship
between the correlograms and Green’s functions and use that
relationship to reconstruct correct reflections. In this paper, we
use MUSIC beamforming to estimate the source location in the
subsurface. The estimated source directionality serves as the
prior knowledge for simulating a training dataset with a similar
source direction as the test dataset. The error in the estimation
of the source directionality may bring its error in the predicted
shot gathers if the neural network has difficulty generalizing
among different source locations. However, by looking at
the imaging result, we find that stacking of different shots
may eliminate these errors and provide a roughly reasonable
imaging result.

The theory of correlation-based SI is strictly valid for the
media without attenuation. Although wavefields are assumed
not to attenuate in most treatments of SI, spurious events will
be visible on correlograms if the medium is dissipative. In
this work, we do not deal with the imperfect situation of
attenuation, but it would make sense to collect the training
and test data sets using the viscoacoustic scheme of the
wave equation and train the neural networks to remove the
spurious events due to attenuation with a supervised learning
framework.

(a) (b)

(c) (d)

(e) (f)

Fig. 14. Generalization from overthrust to salt structures. Virtual shot gather
under the case of (a) near real-time recording length and (b) inhomogeneous
source distribution. (c) Active shot gather. (d)-(f) The resulting shot gathers
predicted by the neural network with a kernel size of 11 × 11. The virtual
or active source is located at x = 6 km on the salt test model. In (d), the
resulting shot gather is predicted using (a). In (e) and (f), the resulting shot
gathers are predicted using (b) with the neural network trained with (e) similar
source direction to and (f) very different source direction from the test data
set.

The proposed method can be generalized to seismic interfer-
ometry on regional and global scales. However, the problems
for regional or global scale are mainly focused on the difficulty
of complete Green’s function retrieval, since the surface wave
part of the Green’s function is much easier to reconstruct
from ambient noise. Compared to the surface waves, the body
waves have weaker energy, a more transparent (less scattered)
property and faster attenuation. Nevertheless, this method may
be used to relieve the unrealistic requirement of randomly-
distributed sources for the application of SI in regional or
global scale.

For the application to field data, we may rely on synthetic
data for training and then consider to improve its generalizabil-
ity from synthetic to field data. Alternatively, we may choose
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to train the neural network with real passive and active shot
pairs. How to collect a training data set containing both passive
and active shot gathers at the same location may be a problem.
For a purpose of monitoring, the passive data are recorded
continuously with days to measure the seismic response of
the subsurface. Then the active shots may be collected in-
termittently during monitoring. For example, if the ambient
noise data are recorded by ocean bottom node, we may use the
streamer data (may need a preprocessing of redatuming from
ocean surface to floor) as the active shot reference. If the active
shot gathers are unavailable, we may adopt architecture dealing
with unlabeled real data, which is beyond the scope of this
work. Moreover, instead of reflections, surface waves would
dominate the Green’s functions retrieved from real ambient
noise data.

Finally, solving the problems of SI by deep learning will
inevitably introduce issues of deep learning. Although we
empirically find that the neural networks enjoy sufficient
generalizability, the unreliability of the prediction will exist
when the training data set is insufficient. Also, how the
neural network learns and predicts is still difficult to unravel.
Although the neural network trained in the case of short
recordings may perform an operation of denoising, the hidden
relationship found in the case of directional sources is still
unexplained.

IV. CONCLUSION

We propose to use supervised learning to handle the practi-
cal challenges of seismic interferometry in realistic situations.
By substituting ambient noise for an active source, we train
deep neural networks to reconstruct the reflections from cor-
relograms. To overcome the temporal limitation of the noise
recording length, the neural networks are trained on correlo-
grams using 300 s passive data to retrieve reflections from 300
s passive measurements. To overcome the spatial limitation of
source distribution, the neural networks are trained on noise
data generated from an inhomogeneous source distribution
(directional wavefield). Numerical examples demonstrate that
deep learning can help with seismic interferometry to extract
reasonably accurate signals from ambient noise in realistic
situations. Instead of simply estimating travel times or image
reflectors from ambient noise, the retrieved reflections may be
used in seismic imaging with the full Green’s function. The
new technology may help with near real-time monitoring of
the Earth’s dynamics in a wide ranges of areas, for example,
urban environments.

ACKNOWLEDGMENT

The authors thank Zhilong Fang from MIT and Elita Li
from Purdue University for helpful discussions. Tensorflow
and Keras are used for deep learning.

REFERENCES

[1] G. Schuster, J. Yu, J. Sheng, and J. Rickett, “Interferometric/daylight
seismic imaging,” Geophysical Journal International, vol. 157, no. 2,
pp. 838–852, 2004.

[2] K. Wapenaar and J. Fokkema, “Green’s function representations for
seismic interferometry,” Geophysics, vol. 71, no. 4, pp. SI33–SI46, 2006.

[3] K. Aki, “Space and time spectra of stationary stochastic waves, with
special reference to microtremors,” Bulletin of the Earthquake Research
Institute, vol. 35, pp. 415–456, 1957.

[4] H. Yao, C. Beghein, and R. D. van der Hilst, “Surface wave array
tomography in SE Tibet from ambient seismic noise and two-station
analysis-II: Crustal and upper-mantle structure,” Geophysical Journal
International, vol. 173, no. 1, pp. 205–219, 2008.

[5] J. F. Claerbout, “Synthesis of a layered medium from its acoustic
transmission response,” Geophysics, vol. 33, no. 2, pp. 264–269, 1968.

[6] O. I. Lobkis and R. L. Weaver, “On the emergence of the Green’s
function in the correlations of a diffuse field,” The Journal of the
Acoustical Society of America, vol. 110, no. 6, pp. 3011–3017, 2001.

[7] P. Roux and M. Fink, “Green’s function estimation using secondary
sources in a shallow water environment,” The Journal of the Acoustical
Society of America, vol. 113, no. 3, pp. 1406–1416, 2003.

[8] K. Wapenaar, “Retrieving the elastodynamic Green’s function of an
arbitrary inhomogeneous medium by cross correlation,” Physical Review
Letters, vol. 93, no. 25, p. 254301, 2004.

[9] R. Snieder, K. Wapenaar, and K. Larner, “Spurious multiples in seismic
interferometry of primaries,” Geophysics, vol. 71, no. 4, pp. SI111–
SI124, 2006.

[10] A. Curtis, P. Gerstoft, H. Sato, R. Snieder, and K. Wapenaar, “Seismic
interferometry - Turning noise into signal,” The Leading Edge, vol. 25,
no. 9, pp. 1082–1092, 2006.

[11] V. C. Tsai, “The relationship between noise correlation and the Green’s
function in the presence of degeneracy and the absence of equipartition,”
Geophysical Journal International, vol. 182, no. 3, pp. 1509–1514, 2010.

[12] A. Fichtner, “Source and processing effects on noise correlations,”
Geophysical Journal International, vol. 197, no. 3, pp. 1527–1531, 2014.

[13] R. Snieder, K. Van Wijk, M. Haney, and R. Calvert, “Cancellation
of spurious arrivals in Green’s function extraction and the generalized
optical theorem,” Physical Review E, vol. 78, no. 3, p. 036606, 2008.

[14] D. Draganov, K. Wapenaar, W. Mulder, J. Singer, and A. Verdel,
“Retrieval of reflections from seismic background-noise measurements,”
Geophysical Research Letters, vol. 34, no. 4, 2007.

[15] D. Draganov, X. Campman, J. Thorbecke, A. Verdel, and K. Wapenaar,
“Reflection images from ambient seismic noise,” Geophysics, vol. 74,
no. 5, pp. A63–A67, 2009.

[16] I. Vasconcelos and R. Snieder, “Interferometry by deconvolution: Part
1 - Theory for acoustic waves and numerical examples,” Geophysics,
vol. 73, no. 3, pp. S115–S128, 2008.

[17] K. Wapenaar, J. van der Neut, and E. Ruigrok, “Passive seismic
interferometry by multidimensional deconvolution,” Geophysics, vol. 73,
no. 6, pp. A51–A56, 2008.

[18] N. Nakata, R. Snieder, T. Tsuji, K. Larner, and T. Matsuoka, “Shear
wave imaging from traffic noise using seismic interferometry by cross-
coherence,” Geophysics, vol. 76, no. 6, pp. SA97–SA106, 2011.

[19] R. Snieder, “Extracting the Green’s function from the correlation of
coda waves: A derivation based on stationary phase,” Physical Review
E, vol. 69, no. 4, p. 046610, 2004.

[20] N. M. Shapiro, M. Campillo, L. Stehly, and M. H. Ritzwoller, “High-
resolution surface-wave tomography from ambient seismic noise,” Sci-
ence, vol. 307, no. 5715, pp. 1615–1618, 2005.

[21] A. Curtis and D. Halliday, “Directional balancing for seismic and general
wavefield interferometry,” Geophysics, vol. 75, no. 1, pp. SA1–SA14,
2010.

[22] P. Zhang, L.-G. Han, Q. Liu, Y.-H. Zhang, and X. Chen, “Interpolation of
seismic data from active and passive sources and their joint migration
imaging,” Chinese Journal of Geophysics - Chinese Edition, vol. 58,
no. 5, pp. 1754–1766, 2015.

[23] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[24] M. V. de Hoop, M. Lassas, and C. A. Wong, “Deep learning architectures
for nonlinear operator functions and nonlinear inverse problems,” arXiv
preprint arXiv:1912.11090, 2019.

[25] Y. Khoo and L. Ying, “SwitchNet: a neural network model for forward
and inverse scattering problems,” SIAM Journal on Scientific Computing,
vol. 41, no. 5, pp. A3182–A3201, 2019.

[26] H. Sun and L. Demanet, “Low frequency extrapolation with deep
learning,” in SEG Technical Program Expanded Abstracts 2018. Society
of Exploration Geophysicists, 2018, pp. 2011–2015.

[27] ——, “Extrapolated full-waveform inversion with deep learning,” Geo-
physics, vol. 85, no. 3, pp. R275–R288, 2020.

[28] W. Zhu, S. M. Mousavi, and G. C. Beroza, “Seismic signal denoising
and decomposition using deep neural networks,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 57, no. 11, pp. 9476–9488, 2019.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS xii

[29] X. Dong, Y. Li, and B. Yang, “Desert low-frequency noise suppression
by using adaptive dncnns based on the determination of high-order
statistic,” Geophysical Journal International, vol. 219, no. 2, pp. 1281–
1299, 2019.

[30] X. Dong and Y. Li, “Denoising the optical fiber seismic data by
using convolutional adversarial network based on loss balance,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 59, no. 12, pp.
10 544–10 554, 2020.

[31] M. Araya-Polo, J. Jennings, A. Adler, and T. Dahlke, “Deep-learning
tomography,” The Leading Edge, vol. 37, no. 1, pp. 58–66, 2018.

[32] Y. Wu and Y. Lin, “InversionNet: An efficient and accurate data-driven
full waveform inversion,” IEEE Transactions on Computational Imaging,
vol. 6, pp. 419–433, 2019.

[33] Z. Zhang and Y. Lin, “Data-driven seismic waveform inversion: A study
on the robustness and generalization,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 58, no. 10, pp. 6900–6913, 2020.

[34] J. Clancy, L. Demanet, J. Helland, and Z. Xu, “Deep learning for
making sense of ambient seismic noise,” in AGU Fall Meeting Abstracts.
American Geophysical Union, 2018, pp. S13B–03.

[35] P. Bharadwaj, M. Li, and L. Demanet, “SymAE: An autoencoder
with embedded physical symmetries for passive time-lapse monitoring,”
in SEG Technical Program Expanded Abstracts 2020. Society of
Exploration Geophysicists, 2020, pp. 1586–1590.

[36] L. Viens and C. Van Houtte, “Denoising ambient seismic field corre-
lation functions with convolutional autoencoders,” Geophysical Journal
International, vol. 220, no. 3, pp. 1521–1535, 2020.

[37] X. Zhang, Z. Jia, Z. E. Ross, and R. W. Clayton, “Extracting dispersion
curves from ambient noise correlations using deep learning,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 58, no. 12, pp.
8932–8939, 2020.

[38] L. Viens and T. Iwata, “Improving the retrieval of offshore-onshore
correlation functions with machine learning,” Journal of Geophysical
Research: Solid Earth, vol. 125, no. 8, p. e2020JB019730, 2020.

[39] L. Seydoux, R. Balestriero, P. Poli, M. De Hoop, M. Campillo, and
R. Baraniuk, “Clustering earthquake signals and background noises
in continuous seismic data with unsupervised deep learning,” Nature
Communications, vol. 11, no. 1, pp. 1–12, 2020.

[40] S. Jakkampudi, J. Shen, W. Li, A. Dev, T. Zhu, and E. R. Martin,
“Footstep detection in urban seismic data with a convolutional neural
network,” The Leading Edge, vol. 39, no. 9, pp. 654–660, 2020.

[41] G. Binder and A. Tura, “Convolutional neural networks for automated
microseismic detection in downhole distributed acoustic sensing data
and comparison to a surface geophone array,” Geophysical Prospecting,
vol. 68, no. 9, pp. 2770–2782, 2020.

[42] A. L. Stork, A. F. Baird, S. A. Horne, G. Naldrett, S. Lapins, J.-
M. Kendall, J. Wookey, J. P. Verdon, A. Clarke, and A. Williams,
“Application of machine learning to microseismic event detection in
distributed acoustic sensing data,” Geophysics, vol. 85, no. 5, pp.
KS149–KS160, 2020.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[44] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[45] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
Gaussian denoiser: Residual learning of deep CNN for image denoising,”
IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3142–3155,
2017.

[46] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[47] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[48] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1125–
1134.

[49] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp.
2223–2232.

[50] H. Sun and L. Demanet, “Seismic interferometry with neural networks,”
in First International Meeting for Applied Geoscience & Energy. So-
ciety of Exploration Geophysicists, 2021, pp. 1384–1389.

[51] K. Wapenaar, “Green’s function retrieval by cross-correlation in case of
one-sided illumination,” Geophysical Research Letters, vol. 33, no. 19,
2006.

[52] J. Thorbecke and K. Wapenaar, “Analysis of spurious events in seismic
interferometry,” in SEG Technical Program Expanded Abstracts 2008.
Society of Exploration Geophysicists, 2008, pp. 1415–1420.

[53] F. Aminzadeh, N. Burkhard, J. Long, T. Kunz, and P. Duclos, “Three
dimensional SEG/EAEG models - An update,” The Leading Edge,
vol. 15, no. 2, pp. 131–134, 1996.

[54] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[55] J. W. Thorbecke and D. Draganov, “Finite-difference modeling experi-
ments for seismic interferometry,” Geophysics, vol. 76, no. 6, pp. H1–
H18, 2011.

[56] G. H. F. Gardner, L. W. Gardner, and A. R. Gregory, “Formation velocity
and density - The diagnostic basics for stratigraphic traps,” Geophysics,
vol. 39, no. 6, pp. 770–780, 1974.

[57] N. Nakata, J. P. Chang, J. F. Lawrence, and P. Boué, “Body wave
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I. THE DIFFERENCE BETWEEN SEISMIC INTERFEROMETRY
(SI) AND DECONVOLUTION

THE goal of this work is interferometry, which is substan-
tially harder than deconvolution. The goal of blind de-

convolution is to find the source wavelet w(t) and the Green’s
function G(xr, xs, t) between the source xs and the receiver
xr given data dr,s,t =

∫
G(xr, xs, t− t′)w(t′)dt′. In contrast,

the goal of interferometry is to determine the Green’s function
G(xrA , xrB , t) between two receivers xrA and xrB from am-
bient noise data dr,s,t =

∫
G(xr, y, t− t′)f(y, t′)dt′dy where

the noisy source signature f(y, t′) =
∑
α δ(y − xα)wα(t

′).
With the seismic interferometry result G(xrA , xrB , t), one of
the receivers xrA or xrB is considered as the “virtual source”
in seismic exploration.

Reasons that we are doing interferometry but not deconvo-
lution include: (1) We have multiple sources (1000 sources in
our numerical examples) at random locations in the subsurface
whereas deconvolution is used to deal with recordings from
one source at a fixed location. (2) The sources are triggered
at random but nearby starting times, resulting in simultaneous
wave propagation in the medium of interest. (3) There is no
access to a theorem linking the expectation of the deconvolu-
tion in the general case to the Green’s function G(xrA , xrB , t)
between the receivers xrA and xrB . In this regard, it is unclear
that deconvolution is even better than cross-correlation.

As a result, it is only tangentially relevant to compare our
method with any of the deconvolution approaches (such as
Bharadwaj et al. [1]). In particular, Bharadwaj et al. [1] can be
used for retrieval of Green’s functions, but in a more contrived
context: (1) Their paper performs a blind deconvolution in the
presence of a single (point) noisy source. (2) Their paper is
nowhere close to approaching the topic of virtual sources. By
contrast, our work focuses on Green’s function (of a virtual
source) retrieval from ambient noise excited by multiple noisy
sources at other locations.

There is one seismic interferometry approach performed by
deconvolution in the frequency domain [2]:

DAB =
u(xrA , xs)

u(xrB , xs)
=
G(xrA , xs)

G(xrB , xs)
=
G(xrA , xs)G

∗(xrB , xs)

| G(xrB , xs) |
2 .

(1)
Here the deconvolution result DAB between two recordings

u(xrA , xs) and u(xrB , xs) has the same phase information

The authors are with the Massachusetts Institute of Technology, Cambridge,
MA 02139, USA. (e-mail: hongyu-sun@outlook.com; laurent@math.mit.edu)
(Corresponding author: Hongyu Sun.)

as the cross-correlation but the noisy source information
is canceled out compared with cross-correlation. However,
it suffers from the same problems as the correlation-based
interferometry in terms of source distribution and recording
length, as we discussed in the main text.

II. THE CHOICE OF DEEP-LEARNING MODEL FOR SI

Green’s function retrieval (of a virtual shot gather) in our
experimental setup has been considered as an image-to-image
translation problem. The input domain contains 2-D images
of virtual shot gathers and the target domain is a collection of
2-D images of active shot gathers. The input and the output
have equivalent dimensions: the numbers of recording points
and receivers.

The paper is not testing the performance of various neural
networks on the seismic interferometry problem but introduc-
ing deep learning and proposing a pipeline to show how to
solve the problem using deep learning. The choice of the
architecture is of course non-unique. A few classic neural
networks can potentially be used to solve the image-to-image
translation problem. People generally use convolutional neural
networks (CNNs, such as ResNet [3]) and generative adver-
sarial networks (GANs, such as Pix2Pix [4] and CycleGAN
[5]) for this type of problem. (CycleGAN has been used for
supervised training with an explicit supervised loss if the
paired data are available. Then, the role of cycle-consistency
loss can be considered as a double constraint for the supervised
training.) However, VAE [6] or DCGANs [7] may not be
good matches with our problem setup, because they are
more suitable for image generation. Compared with image
generation, the problem of image-to-image translation has no
latent variables and is more constrained. Moreover, although
the training of VAE is easier than that of GAN, VAE always
generates poorer images than GAN, because the penalty of
GAN is to generate realistic images [4]. Furthermore, there
is no particular rationale for using residual neural network
(RNN) in this context, because RNN is generally used for
exhibiting temporal dynamic behavior.

We compare the performance among a modified ResNet
(Fig. 5), Pix2Pix and CycleGAN with and without an explicit
supervised loss for paired images on this problem. For the
GANs, the architecture of the generators is the same as that
of the modified ResNet (Fig. 5). We employ the discriminator
in Zhu et al. [5] as the discriminator architecture in our
comparison. The output of the generator is a shot gather,
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(a)

(b)

(c)

Supplementary Fig. 1. The map of SSIM index between the training model
(Fig. 1(b)) and (a) the overthrust test model (Fig. 1(a)), (b) the salt test model
(Fig. 1(d)), and (c) the validation model (Supplementary Fig. 2(a)).

whereas the output of the discriminator is considered as
probabilities. For the loss calculated based on shot gathers,
such as the cycle-consistency loss and the identity loss, we
use L1 norm, because it can prevent blur compared with L2

norm. For the loss calculated based on probabilities, we use
L2 norm to train it under a framework of least-square GAN
[8]. Although all the neural networks that we compared above
seem to work for this problem, the modified ResNet is the
best in terms of accuracy and efficiency among the deep-
learning models that we investigated. Hence, we choose to
use the modified ResNet.

In summary, ResNet is a good match with our problem for
the following reasons: (1) We have paired data and would
like to solve the problem using a supervised framework; (2)
Compared with GANs, training a CNN, such as ResNet is
easier and more efficient. Therefore, we chose to use a CNN
with an L1 loss (the modified ResNet) as the deep-learning
model in the main text. It is much more efficient and can
provide sufficient results for our problem. CycleGAN may be
used in the future to deal with unlabeled real data on top of
simulations.

(a)

(b)

Supplementary Fig. 2. (a) The validation model. (b) The average SSIM index
between the validation model and all the training models. In total, we have
16 training models extracted from the 3D SEG/EAGE Overthrust Model.

(a) (b)

Supplementary Fig. 3. The simulated noise recordings with 1000 random
noise sources in the rectangular region of (a) 200 m ≤ x ≤ 9800 m and
1000 m ≤ z ≤ 3000 m, and (b) 5000 m ≤ x ≤ 8000 m and 2000 m
≤ z ≤ 3000 m on the overthrust test model. The total recording time is
300 s while only 5 s is shown here. In (a), the noise sources are uniformly
distributed in the subsurface. In (b), the noise sources are localized in the
subsurface (inhomogeneous source distribution).

REFERENCES

[1] P. Bharadwaj, L. Demanet, and A. Fournier, “Focused blind deconvo-
lution,” IEEE Transactions on Signal Processing, vol. 67, no. 12, pp.
3168–3180, 2019.

[2] I. Vasconcelos and R. Snieder, “Interferometry by deconvolution: Part 1-
Theory for acoustic waves and numerical examples,” Geophysics, vol. 73,
no. 3, pp. S115–S128, 2008.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[4] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

Supplementary Fig. 4. The learning curves of the neural network with a
kernel size of 11×11 trained under the case of near real-time recording length.
According to the performance on the validation data set, we choose the neural
network trained with four epochs to predict the resulting shot gathers.

(a)

(b)

Supplementary Fig. 5. Migration input model. The input velocity models for
the seismic imaging results on (a) the overthrust test model and (b) the salt
test model.
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(a)

(b)

Supplementary Fig. 6. The learning curves of the neural network with a kernel
size of 11×11 trained under the case of inhomogeneous source distribution.
The training data sets are respectively simulated with (a) similar source
direction to and (b) very different source direction from the test data set.
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(a)

(b)

(c)

Supplementary Fig. 7. Seismic imaging result on the salt test model under
the case of near real-time recording length. Comparison of prestack depth
migration results using (a) virtual shot gathers (Fig. 14(a)), (b) predicted
shot gathers (Fig. 14(d)), and (c) active shot gathers (Fig. 14(c)). The data
comparison for one shot is plotted in Fig. 14. The imaging result using the
predicted shot gathers is comparable with that using the active shot gathers
and is much less noisy compared to that using the raw virtual shot gathers.

(a)

(b)

(c)

Supplementary Fig. 8. Seismic imaging result on the salt test model under
the case of inhomogeneous source distribution. In (a), the migration input
data are the virtual shot gathers (Fig. 14(b)). In (b), the migration input data
are predicted by the neural network trained with the similar source direction
(Fig. 14(e)). In (c), the migration input data are predicted by the neural
network trained with the very different source direction (Fig. 14(f)). The data
comparison for one shot is plotted in Fig. 14.


