
1. Introduction
Seismic phase detection and picking are fundamental tasks in earthquake seismology, where the aim is to iden-
tify earthquakes in the continuous data and measure the arrival times of seismic waves. Historically, human 
seismic analysts manually labeled earthquake signals and the arrival times of seismic phases by looking for 
coherent wavefronts on multiple stations and then picking the onset times of P and S waves at each station. Such 
analysis, however, is subjective, time-consuming, and prone to errors. Considerable effort has been dedicated to 
developing accurate, automatic, and timely earthquake detection methods, such as short-term average/long-term 
average (Withers et al., 1998), template matching (Gibbons & Ringdal, 2006; Shelly et al., 2007), and finger-
print and similarity threshold (Yoon et al., 2015). Recent advances in deep learning have greatly improved the 
accuracy and efficiency of automatic phase picking algorithms (Dokht et al., 2019; Feng et al., 2022; Johnson & 
Johnson, 2022; Mousavi et al., 2020; Mousavi, Zhu, et al., 2019; Münchmeyer et al., 2022; Perol et al., 2018; Ross 
et al., 2018; J. Wang et al., 2019; Xiao et al., 2021; Yeck et al., 2021; Zhou et al., 2019; W. Zhu & Beroza, 2018; 
L. Zhu et al., 2019; W. Zhu, Tai, et al., 2022). However, the single-station detection strategy used in most of the 
machine-learning detection algorithms can result in failure to detect events with weak amplitude, or mistakenly 
detect local noise signals with emergence pulses. Indeed, the performance gains of single-station neural phase 
pickers have rapidly saturated, leading to the question of where the next breakthroughs in phase picking will 
come from.

Abstract Seismic wave arrival time measurements form the basis for numerous downstream applications. 
State-of-the-art approaches for phase picking use deep neural networks to annotate seismograms at each 
station independently, yet human experts annotate seismic data by examining the whole network jointly. 
Here, we introduce a general-purpose network-wide phase picking algorithm based on a recently developed 
machine learning paradigm called Neural Operator. Our model, called Phase Neural Operator, leverages the 
spatio-temporal contextual information to pick phases simultaneously for any seismic network geometry. This 
results in superior performance over leading baseline algorithms by detecting many more earthquakes, picking 
more phase arrivals, while also greatly improving measurement accuracy. Following similar trends being seen 
across the domains of artificial intelligence, our approach provides but a glimpse of the potential gains from 
fully-utilizing the massive seismic data sets being collected worldwide.

Plain Language Summary Earthquake monitoring often involves measuring arrival times of 
P- and S-waves of earthquakes from continuous seismic data. With the advancement of artificial intelligence, 
state-of-the-art phase picking methods use deep neural networks to examine seismic data from each station 
independently; this is in stark contrast to the way that human experts annotate seismic data, in which waveforms 
from the whole network containing multiple stations are examined simultaneously. With the performance gains 
of single-station algorithms approaching saturation, it is clear that meaningful future advances will require 
algorithms that can naturally examine data for entire networks at once. Here we introduce a multi-station 
phase picking algorithm based on a recently developed machine learning paradigm called Neural Operator. 
Our algorithm, called Phase Neural Operator, leverages the spatial-temporal information of earthquake signals 
from an input seismic network with arbitrary geometry. This results in superior performance over leading 
baseline  algorithms by detecting many more earthquakes, picking many more seismic wave arrivals, yet also 
greatly improving measurement accuracy.
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Across the various domains of artificial intelligence, such as natural language processing and computer vision, the 
largest gains in performance have come from (a) using ever-larger data sets with increasingly detailed labeling/
prediction tasks, (b) making sense of unlabeled data, and (c) incorporating powerful model architectures (e.g., 
transformers) that are capable of learning to extract information from these very complex data sets. Translating 
these successes to the phase picking problem would similarly require formulating the problem more generally, in 
which the goal is to output phase picks only after examining the seismic data for all available sensors in a network. 
To accomplish such a general formulation, new models are needed that can naturally consider the spatial and 
temporal context on a variable arrangement of sensors. Although strategies have been proposed to handle the irreg-
ular seismic network geometry for earthquake source characterization (van den Ende & Ampuero, 2020; X. Zhang 
et al., 2022), earthquake early warning (Bloemheuvel et al., 2022; Münchmeyer et al., 2021), and seismic phase 
association (McBrearty & Beroza, 2023), a generalized network-based phase picker remains an open question.

In this paper, we introduce such an approach for general purpose network-wide earthquake detection and phase 
picking. Our algorithm, called Phase Neural Operator (PhaseNO), builds on Neural Operators (Kovachki 
et al., 2023), a recent advance of deep learning models that operate directly on functions rather than finite dimen-
sional vectors. PhaseNO learns infinite dimensional function representations of seismic wavefields across the 
network, allowing us to accurately measure the arrival times of different phases jointly at multiple stations with 
arbitrary geometry. We evaluate our approach on real-world seismic data sets and compare its performance with 
state-of-the-art phase picking methods. We demonstrate that PhaseNO outperforms leading baseline algorithms 
by detecting many more earthquakes, picking many more phase arrivals, yet also greatly improving measurement 
accuracy. Overall, our approach demonstrates the power of leveraging both temporal and spatial information for 
seismic phase picking and improving earthquake monitoring systems.

2. Method: Phase Neural Operator
We introduce an operator learning model for network-wide phase picking (see Text S1 in Supporting Informa-
tion S1). PhaseNO is designed to learn an operator between infinite-dimensional function spaces on a bounded 
physical domain. The input function is a seismic wavefield observed at some arbitrary collection of points in 
space and time, f(x, y, t), and the output function is a probability mask g(x, y, t) that indicates the likelihood of 
P- and S-wave arrivals at each point (x, y, t). A powerful advantage of Neural Operators over classical Neural 
Networks is that they are discretization-invariant, meaning that the input and output functions can be discretized 
on a different (arbitrary) mesh every time a solution is to be evaluated, without having to re-train the model. 
This critical property allows for Neural Operators to be evaluated at any point within the input physical domain, 
enabling phase picking on a dynamic seismic network with different geometries.

We combine two types of Neural Operators to naturally handle the mathematical structure of seismic network data. 
For the temporal information, we use Fourier Neural Operator (FNO) layers (Li et al., 2020a), which are ideal for 
cases in which the domain is sure to be discretized on a regular mesh, because fast Fourier transforms are used to 
quickly compute a solution. Since seismograms are mostly sampled regularly in time, FNO can efficiently process 
and encode seismograms. For the spatial information, our sensors are generally not on a regular mesh, and so we 
instead use Graph Neural Operators (GNO, Li et al., 2020b) to model the relationship of seismic waveforms at differ-
ent stations. This type of neural operator is naturally able to work with irregular sensors, as it uses message passing 
(Gilmer et al., 2017) to aggregate features from multiple stations and construct an operator with kernel integration.

Figure 1 summarizes the PhaseNO architecture. The model is composed of multiple blocks of operator layers in 
which FNO and GNO are sequentially connected and repeated several times, allowing for sufficient communi-
cations and exchange of spatiotemporal information between all stations in a seismic network. Skip connections 
are used to connect the blocks, resulting in a U-shape architecture. The skip connection directly concatenates 
FNO results on the left part of the model with GNO results on the right without going through deep layers, which 
improves convergence and allows for deeper, more overparameterized models.

3. Results
3.1. Performance Evaluation

In this study, we benchmark the performance of PhaseNO against three leading baseline models (see Text S3 in 
Supporting Information S1): EQTransformer (Mousavi et al., 2020), PhaseNet (W. Zhu & Beroza, 2018), and 
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EdgePhase (Feng et al., 2022). We trained PhaseNO on an earthquake data set from the Northern California 
Earthquake Data Center (NCEDC) spanning the period 1984–2019 (see Text S4 in Supporting Information S1), 
that is, the same training data set as PhaseNet. We evaluated PhaseNO and each baseline model on an out of 
sample test data set for the period 2020 containing 43,700 P/S picks of 5,769 events. We choose the time window 
for each sample based on their pre-trained models: 30  s for PhaseNO and PhaseNet, and 60  s for EQTrans-
former and EdgePhase. Positions of picks are randomly placed in the middle 30 s of the time window. For all 
of the models, P- and S-picks were determined from peaks in the predicted probability distributions by setting a 
pre-determined threshold. Each model used a distinct threshold as the one maximizing the F1 score to ensure the 
models compared under their best conditions (Figure 2a; Figure S1 in Supporting Information S1).

Our method results in the highest F1 scores for both P- and S-waves, being 0.99 and 0.98 respectively. This is in 
addition to having the highest optimal thresholds (0.70 for P and 0.65 for S) of all the models tested (Table S1 in 
Supporting Information S1). Given that similar labeling strategies were used for training the baselines (Gaussian 
for PhaseNet and triangular for the other models), a higher threshold indicates that PhaseNO has a higher confi-
dence level for detecting and picking seismic arrivals than other methods. When true picks are unavailable to 
determine the optimal threshold for a particular test data set based on F1 scores (i.e., the trade-off between correct 
and false phases), PhaseNO is able to minimize false detection and give more picks compared with other methods 
with the same pre-determined threshold. The two single station picking models, PhaseNet and EQTransformer, 
have similar F1 scores, but the former has higher recall and the latter has higher precision. EdgePhase is built on 
EQTransformer and has better performance in terms of the precision-recall curves. However, the phase picks are 
less precise in terms of time residuals (Table S1 and Figure S2 in Supporting Information S1). PhaseNO detects 
more true positives, fewer false negatives, and fewer false positive picks than the other deep-learning models at 
almost all signal-to-noise ratio (SNR) levels (Figure S3 in Supporting Information S1). Despite generating more 
picks, PhaseNO results in the smallest mean absolute error for both P and S phases. Overall, PhaseNO achieves 
the best performance on all six metrics, with one minor exception. The standard deviation of P phase residuals 
for PhaseNO is 0.01 s (one time step) larger than PhaseNet. It should be noted that the newly detected phases 
by PhaseNO are likely to be more challenging cases as their signal-to-noise levels are lower, and thus result in 
slightly increased standard deviation.

Figure 1. Phase Neural Operator architecture. The model consists of multiple Fourier Neural Operator (FNO) and Graph Neural Operators (GNO) layers that are 
sequentially connected and repeated. 𝐴𝐴  and 𝐴𝐴  are up- and down-projections parameterized by neural networks. The model uses seismograms from a seismic network 
containing multiple stations with an arbitrary geometry as the input and predicts the probabilities of P-phase and S-phase arrival times for all input stations. Station 
locations are encoded as two channels of the input, in addition to three channels carrying the three-component waveforms. The relative locations (xi, yi) between stations 
can be used to learn weights as edge features in a graph (see Text S2 in Supporting Information S1).
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We compare the predicted probability distributions of each neural phase picker for several representative events 
(Figure 2b, Figures S4 and S5 in Supporting Information S1). PhaseNO works very well on different event magni-
tudes, instrument types, and waveform shapes. PhaseNet generates some false positive picks that are removed 
by multi-station methods (PhaseNO and EdgePhase); however, EdgePhase also generates many false negatives. 
Through exchanging temporal and spatial information multiple times, PhaseNO effectively prevents false picks 
while improving the detection ability of true picks. PhaseNO successfully finds picks on low SNR waveforms by 
leveraging contextual information from other stations.

S-phases generally exist in the coda of P-phases and are more challenging to find. Thus, more labeling errors from 
human analysts are expected on S phases than P phases. For instance, in Figure S4a in Supporting Information S1, 

Figure 2. Performance evaluation on the NCEDC2020 test data set. (a) Precision-recall curves. The best threshold (th) for 
each model on this test data set is selected based on the maximum F1 scores (stars labeled on the curves) that models achieve 
(Figure S1 in Supporting Information S1). (b) Event nc71112909 with a magnitude of 0.43. The station name and epicentral 
distance are shown on waveforms.
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three of the models generate consistent S picks, but the predicted peaks are systematically offset from the manual 
picks on this event. For these example cases, PhaseNO shows significant improvement in S-phase picking and 
generates higher probabilities than the other methods. Moreover, the width of the picks predicted by PhaseNO 
may represent the degree of difficulty in picking the phases from the waveforms, even though the same label 
width is used in baselines and our method. Picks with high probabilities may have wider distribution if the wave-
forms have low SNR. Also, our model can handle the waveforms with more than one pick existing in a sample 
(Figure S5 in Supporting Information S1).

3.2. Application to the 2019 Ridgecrest Earthquake Sequence

We tested the detection performance and generalization ability of PhaseNO on the 2019 Ridgecrest earthquake 
sequence. We downloaded continuous waveform data for EH, HH, and HN sensors for the period 4 July 2019 
(15:00:00) to 10 July 2019 (00:00:00) at 20 Southern California Seismic Network (SCSN) stations, which is a total 
of 36 distinct sensors. Each of these sensors is treated as a distinct node in the graph, even if they are co-located 
(Table S2 in Supporting Information S1). Waveform data are divided into hourly streams with a sampling rate 
of 100 Hz. This is a challenging data set due to the overlap of numerous events. Since no ground-truth catalog is 
available for the continuous data, we evaluated our results by comparing them with catalogs produced by SCSN, 
PhaseNet, and two template matching studies (Ross et al., 2019; Shelly, 2020).

We first divided the entire seismic network into two parts and constructed two graphs for every hour of data, 
due to the increased computational cost with the number of nodes in a graph (Figure S6 in Supporting Informa-
tion S1). The 36 nodes were randomly divided into two graphs with 18 nodes. Continuous data were cut into a 
30-s time window with an overlap of 10 s, resulting in 180 predictions for 1-hr data on 18 nodes. After preproc-
essing, PhaseNO predicted the probabilities of earthquake phases on 18 nodes at once. We compare representa-
tive waveforms with probabilities predicted by PhaseNO and PhaseNet (Figures 3 and 4, and Figures S7–S11 in 
Supporting Information S1). Both models show great generalization ability, as these waveforms were recorded 
outside of the training region. Our model works very well on continuous data, especially when there is more than 
one event in a 30-s time window, when the event is located at any position of the window, and when the wave-
form has different shapes with low SNR. Owing to the learned waveform consistency among multiple stations, 
PhaseNO detects much more picks with meaningful moveout patterns than PhaseNet.

After prediction, we determined phase picks using a threshold of 0.3 for both P and S phases. PhaseNO detected 
693,266 P and 686,629 S arrival times, while PhaseNet found 542,793 P and 572,991 S arrival times with the 
same threshold and the same stations. We evaluated the accuracy of the detected picks by comparing the arrival 
times with manually reviewed picks from SCSN (Figure S12 in Supporting Information S1). The standard devia-
tion of the pick residuals between SCSN and PhaseNO was 0.10 s for P phases and 0.14 s for S phases, calculated 
from 118,746 P picks and 96,247 S picks. The standard deviation, however, was slightly higher than those with 
PhaseNet (0.08 s for P from 106,061 picks and 0.13 s for S from 88,438 picks). Since the newly detected picks 
are more challenging cases with low fidelity, it is reasonable for PhaseNO to show a larger travel time difference.

We convert candidate phase detections into events by phase association with GaMMA (W. Zhu, McBrearty, 
et al., 2022). We set a minimum of 17 picks per event to filter out low-quality associations. This results in PhaseNet 
detecting 21,748 events with 37.54 picks per event, whereas PhaseNO detects 26,176 events with 39.37 picks 
per event (Figure 5a). Many of the unassociated picks are probably a consequence of our strict filtering criteria 
during association, rather than false detections. With the same association hyperparameters, the additional 4,428 
events highlight the advancement of PhaseNO for earthquake detection. Despite the increased number of events, 
PhaseNO shows high detection quality with around two more picks per event compared to PhaseNet, even though 
they are smaller events in general (Figure S13 in Supporting Information S1). GaMMA calculates magnitudes for 
events detected by PhaseNO and PhaseNet, and they both show linear Gutenberg-Richter distributions (Figure 5b). 
Indeed, our results have fewer microearthquakes than the template matching catalog by Ross et al. (2019). Since 
microearthquakes usually have limited propagation ranges and can only be recorded by several stations, they 
would have been filtered out during association and thus not shown on the frequency-magnitude distribution. 
Moreover, event locations determined by GaMMA are generally consistent between PhaseNO and PhaseNet cata-
logs (Figure 5c), confirming that the additional events by PhaseNO are reasonable detections of real earthquakes.

Furthermore, we treat the manually reviewed SCSN catalog as a baseline and evaluate how many earthquakes 
were successfully recovered. We consider that two events are matched if they occur within 3 s from each other. 
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With such criteria, Shelly, Ross et al., and PhaseNet matched around 81%, 86%, and 88% events, respectively. In 
comparison, with our strict filtering criteria during association, PhaseNO catalog totaling 26,176 events matched 
approximately 94% events in the SCSN catalog (10,673 of 11,389) with additional events, indicating the highest 
recall score of PhaseNO. PhaseNO consistently detects more events than PhaseNet, SCSN, and Shelly's template 
matching catalog (Shelly, 2020) over time and approaches the number of earthquakes reported by another more 
detailed template matching catalog (Ross et al., 2019). Moreover, PhaseNO achieves a much more stable detec-
tion with the greatest number of events found when the Mw 7.1 mainshock occurred (Figure 5a) and with the 
gradually reduced seismicity rate afterward, indicating the power of the method to illuminate complex earthquake 
sequences. Examples of events and associated picks detected by PhaseNO can be found in Supporting Informa-
tion S1 (Figures S14–S16 in Supporting Information S1).

Figure 3. Example results for a 35-s window during the 2019 Ridgecrest earthquake sequence.
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It should be noted that our catalog differs from those of the SCSN and template matching catalogs in the 
number of stations and association algorithms. However, picks from PhaseNO and PhaseNet are detected 
on the exact same stations and then associated with GaMMA, providing the fairest comparison. Two 
post-processing hyperparameters, the threshold in phase picking and the minimum number of picks asso-
ciated with an event, control the total number of earthquakes in a catalog. A lower threshold and a smaller 
association minimum provide more events, despite likely more false positive events (Table S3 in Supporting 
Information S1). PhaseNO consistently detects more events than PhaseNet using the same hyperparameters, 
pointing out the importance of leveraging the spatial information in addition to the temporary information 
for phase picking.

Figure 4. Example results for a short window during the 2019 Ridgecrest earthquake sequence. More examples can be found 
in Supporting Information S1 (Figures S7–S11 in Supporting Information S1).
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4. Discussion and Conclusions
With a fixed model architecture, PhaseNO can handle seismic networks with arbitrary geometries; we demon-
strated this by training on the Northern California Seismic Network and evaluated the model on the Southern 
California Seismic Network, without retraining. This is a critical property of the Neural Operator class of models, 
which can learn in infinite dimensions.

PhaseNO shows several distinctive characteristics in terms of network design. Compared to most of the currently 
popular detection algorithms (deep-learning or traditional methods), PhaseNO mimics human learning and deci-
sion making by using context from the whole seismic network, rather than seismograms at a single station. 
By consulting information and searching for consistent waveforms from surrounding stations, PhaseNO greatly 
improves phase picking on low SNR data, especially S phases that usually are hidden in the coda of P phases.

Apart from the characteristics in the spatial domain, PhaseNO has a unique ability to identify phases from tempo-
ral information. The well-known transformer architecture that has brought about major successes in natural 
language processing (Vaswani et  al.,  2017) can be viewed as a special case of Neural Operators (Kovachki 
et al., 2023). Just as EQTransformer uses an attention mechanism to investigate global dependencies, PhaseNO 
supervises the global features with kernel integrals in space and time. Like PhaseNet, PhaseNO adopts a U-shape 
architecture with skip connections, which improves model convergence and allows for a deeper model design 
with greater expressiveness.

Compared to EdgePhase, a multi-station picking model, our model uses multiple GNO layers, a type of Neural 
Operator that allows for kernel integration over the network to extract rich spatial features. Each GNO layer is 

Figure 5. Comparison of earthquake catalogs of the 2019 Ridgecrest earthquake sequence. (a) Earthquake number. (b) Frequency-magnitude distributions. (c) 
Earthquake hypocenters.
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inserted between two FNO layers, forcing the exchange of information between spatial and temporal domains. 
We also encode station locations as node features to weight the message constructed between nodes. Additionally, 
instead of building a graph based on geographic distances and only selecting neighboring nodes within a certain 
distance from the target node, we construct a graph using all nodes in a seismic network. All these modifications 
contribute to maximizing the usage of spatial features for phase picking.

A major limitation to PhaseNO, however, is the dependence of memory usage on the number of stations in one 
prediction. Spatial information is exchanged between all pairs of nodes in a graph; therefore, the computational 
cost scales quadratically with the number of nodes, with complexity O(n 2). Hence, we suggest selecting a subset 
of stations from the entire large seismic network for one prediction until all stations have been processed before 
moving to the next time segment of continuous data, like the procedure described in the Ridgecrest example. If the 
seismic network covers a wide range of areas, we may select stations based on k-means clustering (Lloyd, 1982). 
In this way, we can greatly accelerate the prediction procedure and save memory usage, particularly when there 
are many stations and when the computational resources are limited.

Data Availability Statement
Version v1.0.0 of PhaseNO and the pre-trained model are preserved at Sun (2023). The training and test data are 
from Northern California Earthquake Data Center (NCEDC, 2014). The data of the 2019 Ridgecrest earthquake 
sequence can be accessed from Southern California Earthquake Data Center (SCEDC, 2013), and Plate Boundary 
Observatory Borehole Seismic Network (NCEDC, 2014).
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Text S1: Neural Operators

Neural operators are generalizations of neural networks to map between infinite dimensional

function spaces. This new class of models provably satisfy the universal approximation

theorem for operators [Kovachki et al., 2023]. Here we propose a new architecture for learning

maps from wavefields to phase picks. Neural Operators generally begin with a lifting operator

(P) that maps the input function (f) to one with a larger co-domain, v. These functions

are then operated on iteratively with nonlinear kernel integration operators, and finally

are passed through a projection operator (Q) that maps the hidden representation to the

output function (g). P and Q are parameterized with fully connected neural networks and

act pointwise on the physical domain. The basic formula of the iterative kernel integration is

a composition of linear integral operators and non-linear activation functions. Each integral

operator has the following form:

u(x) = (κ ∗ vl)(x) =
∫

κ(x, y)vl(y)dy, (1)

where v and u are the intermediate input and output functions, respectively, and κ is a

kernel function. Here, we define v1 = P(f) as the input to the operator. There are several

ways to parameterize the kernel [Kovachki et al., 2023]. We treat the seismograms recorded

by a seismic network as the input function f , discretized with a regular mesh in the time

domain and irregular mesh in the spatial domain. In our architecture, we compute the kernel

function separately for space and time.

Fourier Neural Operators

For the regular mesh in the time domain, we parameterize the kernel in Fourier space and

compute the kernel integral operator with fast Fourier transform, leading to efficient com-

putation with almost linear complexity [Li et al., 2020a]. From the convolution theorem, we

have

(κ ∗ v)(x) = F−1(Rϕ · (F(v))))(x), (2)

where F and F−1 denote the Fourier transform and its inverse. Rϕ is the Fourier transform

of κ, parametrized by ϕ. With an activation function σ acting locally in each layer, a single
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FNO layer update is

u(x) = σ(Wv(x) + F−1(Rϕ · (F(v)))(x), (3)

where W is a local linear operator. In practice, we truncate the Fourier series at a maximal

number of modes and parameterize R with a few lower modes. Starting from the input v,

one FNO layer contains two parallel branches (Figure 1): one branch computes the kernel in

the Fourier space and performs the global integration; the other applies a pointwise linear

transform W to the input. Results from two branches are added before applying σ.

PhaseNO utilizes seven FNO layers similar to the U-NO architecture [Rahman et al.,

2022]. The number of modes in each FNO layer is 24, 12, 8, 8, 12, 24, and 24. The

width (the channel number) of the discretized u at each node changes with the dimension of

Rϕ. At each FNO layer, the discretized u has a dimension of 48×3000, 96×750, 192×200,

96×750, 48×3000, 48×3000, and 48×3000, where the first dimension denotes the width and

the second dimension denotes time. All FNO layers include nonlinearity via the Gaussian

Error Linear Unit [Hendrycks and Gimpel, 2020], except the last one where no activation

function is applied. Note that we did not draw the last FNO layer on Figure 1 for simplicity.

Graph Neural Operators and the message passing framework

Kernel integration can be viewed as an aggregation of messages with the generalized message

passing in graph neural networks [Li et al., 2020b]. Since f(x, y, t) in the spatial domain

is discretized based on the geometry of a seismic network, we parameterize the kernel with

GNOs and implement it with the message passing framework. We consider a seismic network

with an arbitrary geometry as a graph. Each station in the seismic network is a node of the

graph. Given node features v(x), we update the value v(xi) of the node xi to the value u(xi)

with the averaging aggregation by

u(xi) = τ(v(xi),
1

|N (xi)|
∑

xj∈N (xi)

φ(v(xi), v(xj))), (4)

where τ and φ denote differentiable functions such as multilayer perceptron (MLP). n is

the number of nodes in a graph. N (xi) denotes the neighborhood of xi. To capture global

dependencies, we construct a graph by connecting each node to all nodes in the graph,
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resulting in a total edge number of n2. In other words, N (xi) consists of all stations in a

seismic network and includes a self-loop, meaning that each node has an edge pointing to

itself.

The edge features are computed by eij = φ(v(xi), v(xj)) where φ : Rc × Rc → Rc′ is a

nonlinear function with a set of learnable parameters [Wang et al., 2019b]. We choose φ as

an MLP with one hidden layer containing 4c neurons. The function takes the concatenation

of two node features v(xi) and v(xj) as the input (with a channel number of 2c) and outputs

eij with the same channel number as the node features (c′ = c). When all the edge features

(messages) are available, the target node xi collects all the messages and aggregates them

with an averaging operation. Finally, we use another MLP for τ (with the same architecture

as φ) to update the nodes features of xi using the concatenation of v(xi) and the aggre-

gated message as the input. Message passing allows the exchange of information between

neighboring nodes, which enhances the relevant signals shared by adjacent nodes.

Text S2: Encoding station locations as node features

Station locations are encoded as node features along with waveform data. Instead of directly

using longitudes and latitudes, here we convert the geographic locations (ai,bi) of stations

on the Earth to their relative locations (xi,yi) on the computational domain. The converted

locations xi,yi are included as two channels of the input along with three-component wave-

forms. Each sample has a computational domain varying in its center. The center is selected

based on the maximum longitude (amax), the minimum longitude (amin), the maximum

latitude (bmax), and the minimum latitude (bmin) of all stations in a graph. The physical

minimum of the computational domain is

a0 =
amax + amin

2
− l

2
(5)

b0 =
bmax + bmin

2
− l

2
(6)

where l denotes the physical range of the computational domain on the Earth. Then the

relative location of each station on the computational domain is

xi =
ai − a0

l
(7)
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yi =
bi − b0

l
(8)

The physical range ought to be large enough to include all the selected stations in a graph.

Here we choose l = 2◦, corresponding to an area of around 200 km × 200 km. The com-

putational domain and the relative locations are calculated independently for each sample

during the training process. For practical applications, the locations are determined in the

same way but only once if given one seismic network.

Text S3: Baselines for model evaluation

In this study, we benchmark the performance of PhaseNO against three leading baseline mod-

els: EQTransformer [Mousavi et al., 2020], PhaseNet [Zhu and Beroza, 2018], and EdgePhase

[Feng et al., 2022]. We summarize key attributes about these baselines here. EQTransformer

and PhaseNet are single-station detection and picking models using convolutional layers and

other modern deep learning components. PhaseNet was trained on an earthquake dataset

from Northern California with several hundred thousand data samples (623,054 P/S picks).

EQTransformer was trained on a global dataset of earthquakes called STEAD [Mousavi

et al., 2019a]. EdgePhase is a multi-station picking model that incorporates an edge convo-

lution module in the latent space of EQTransformer; it was built on the pre-trained layers of

EQTransformer and then fine-tuned on earthquake and noise data of the year 2021 recorded

by the Southern California Seismic Network (SCSN). The pre-trained EQTransformer com-

pared here has been fine-tuned with the same dataset as EdgePhase, leading to slightly better

performance than the original model [Feng et al., 2022]. Since phase neural pickers usually

transfer well between different regions for local earthquakes [Münchmeyer et al., 2022, Zhang

et al., 2022a], it is common to use pre-trained models as baselines for this type of problems

[Mousavi et al., 2020].

Text S4: Training and test datasets

Advanced deep-learning model architecture needs a training dataset with sufficient quality

and quantity to investigate its full potential. Taking the wavefield properties of a seismic

network into account, we come up with effective data augmentation strategies specifically for
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graph-type samples. First, we stack events at the graph level aiming to reserve the moveout

patterns of arrivals at different stations for each event. In this way, waveforms at different

stations in a graph may consist of different number of events. Second, earthquakes follow

a power law whereby most events are small and may be observed by only several stations

instead of the entire seismic network. Thus, it is important to add virtual stations at random

locations in a graph with noise waveforms to regularize PhaseNO.

We construct a training dataset with three-component earthquake waveforms from NCEDC

of the years from 1984 to 2019 and three-component noise waveforms from the STanford

EArthquake Dataset (STEAD). The earthquake data are downloaded event by event with

stations containing both P and S arrival times picked by human analysts. Gaps are padded

with zeros if some segments are missing. We normalize each component by removing its

mean and dividing it by the standard deviation. We use a probability function with a trian-

gular shape to label phase arrivals. Probabilities at manually picked P/S arrivals are labeled

1 and linearly decrease to 0 before and after the manual picks. For each pick, the duration

of probabilities larger than 0 is 0.4 s, with the highest probability centered on the middle

of the time window. Instead of treating seismograms on a single station as one sample, we

construct a graph with all stations in a seismic network and use the graph as one sample.

We perform data augmentation during training. We stack the individually downloaded

events with the following steps to reserve their moveout patterns on different stations:

• Randomly select station A from all stations recording event A,

• Randomly select event B from all the events recorded by station A,

• Randomly assign the weights of α and β (0.1 < α < 0.9, 0.1 < β < 0.9, α + β=1) to

the amplitudes of two events,

• Randomly select a time shift between two events to be stacked,

• Stack event A and event B if both events are recorded on the same stations, and

• Reserve waveforms at other stations that record only one event.

Generally, more than one station records both events in a seismic network, even though

we select event B based on one station recording event A. More events can be stacked by

7



repeating the above steps. Around 66% of samples in the training dataset contain two or

three events. We also generate up to 16 virtual stations with random locations and assign

noise waveforms to these virtual stations. The noise data are randomly selected from the

235K noise samples in the STEAD. Except for 6.25% of samples that contain only earthquake

waveforms, each sample has both earthquake and noise waveforms recorded at different

stations in a seismic network. In one graph-type sample, the number of events on each

station ranges from zero to three. Since a seismic network may contain both three-component

and one-component seismometers, we randomly select several stations and consider them as

one-component stations. On these stations, we randomly select and repeat one component

three times. Each sample may have different number of stations. To save the computational

cost, we reserve no more than 32 but at least 5 stations in one graph. We then cut 30-s

waveforms at all stations with a random starting time, so positions of phases within the

window are varied. With a sampling rate of 100 Hz, both input waveform and output

probability have 3000 data points for each component at each station. In total we have 57K

graphs for training. The edge index is built during training, with all nodes in a graph. If

one station contains multiple types of channels, we consider them as different nodes with

the same geographic locations. We show two examples of the graph-type samples in the

Supporting Information (Figures S17 and S18).

The input data at each station consist of five channels: three waveform channels and two

location channels. The output has two channels with P-phase and S-phase probabilities. To

encode station locations as node features, we define a computational domain of 2◦×2◦ in the

longitude and latitude dimensions and convert the geographic locations of stations to their

relative locations on the computational domain. The converted locations xi, yi are included

as the fourth and fifth channels along with waveforms.

The test dataset contains 5,769 samples built with the NCEDC earthquake dataset of

the year 2020. Waveforms are preprocessed in a similar way to the training dataset without

data augmentation. Each sample in the test dataset contains only one event recorded by

multiple stations. In total, we use 43,700 P/S picks of the 5,769 events to evaluate PhaseNO

and compare with other methods.
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Text S5: Training details and evaluation metrics

We adopt the binary cross-entropy as our loss function. We choose Adaptive Moment Esti-

mation (Adam) as the optimizer with a batch size of one and a learning rate of 10e−4. The

training takes around 10 hours for each epoch on one NVIDIA Tesla V100 GPU. The model

converges after around 10 epochs (Figure S19). We stop training after 20 epochs and use

the result as our final model.

We use six metrics to evaluate the performance: precision, recall, F1 score, mean (µ),

standard deviation (σ), and mean absolute error (MAE) between resulting picks and human

analysts (labels). The resulting pick is counted as a true positive pick (TP) if the time

residual between the pick and the label is less than 0.5 s. If there are no positive picks

beyond a time residual of 0.5 s for one label, we count it as a false negative one (FN).

Moreover, false positives are counted if the positive picks cannot match any label (FP).

Then we can evaluate the performance with:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1score =
2× Precision×Recall

Precision+Recall
(11)

Text S6: More discussions

By analyzing the prediction errors as a function of SNR, earthquake magnitude, and epicen-

tral distance (Figure S20), we showed that SNR plays a more important role than the other

factors. Errors tend to increase with decreasing SNR, but they are generally consistent at

different magnitudes. Large epicentral distances do not necessarily cause large prediction

errors, probably because earthquakes that can propagate to long distances are generally

large ones and show high SNR signals over a wide area. We further examine the relationship

between these factors with predicted probabilities (Figure S21). We find that low prediction

probabilities generally appear at low SNRs. Other factors, such as earthquake magnitude

and epicentral distance, seem to have slight impact on the predicted probabilities. More-

over, most phases can be accurately detected with minor prediction errors, although the
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prediction probabilities may be low. More confident predictions unexpectedly show larger

prediction errors than less confident predictions (smaller probabilities), which may imply the

imperfection of manually picked labels.

We found that the uncertainty in PhaseNO predictions may correlate with the peak

prediction width. However, wider peaks on low fidelity signals may impose challenges on

pick determination, resulting in slightly increased errors of arrival times if just the maximum

value is saved, particularly for S phases (Figure S12). These uncertainties would thus be

of greater value for location or tomography algorithms that consider measurement errors

explicitly.
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Table S1: Phase picking performance on the test dataset. The best score is highlighted in
bold.

µ(s) σ(s) MAE(s) F1 Precision Recall

P-phase

PhaseNO 0.00 0.05 0.02 0.99 0.99 0.99
PhaseNet 0.00 0.04 0.02 0.96 0.95 0.97
EdgePhase 0.01 0.09 0.07 0.97 0.98 0.96
EQTransformer 0.02 0.08 0.06 0.96 0.97 0.95

S-phase

PhaseNO 0.01 0.09 0.06 0.98 0.97 0.98
PhaseNet 0.02 0.09 0.06 0.93 0.90 0.96
EdgePhase 0.07 0.12 0.11 0.95 0.96 0.95
EQTransformer 0.01 0.12 0.09 0.94 0.95 0.93
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Table S2: List of stations used for PhaseNO and PhaseNet in the 2019 Ridgecrest earthquake
sequence.

network station channel latitude longitude component
1 CI CCC HH 35.525 -117.365 E,N,Z
2 CI CCC HN 35.525 -117.365 E,N,Z
3 CI CLC HH 35.816 -117.598 E,N,Z
4 CI CLC HN 35.816 -117.598 E,N,Z
5 CI DAW HH 36.271 -117.592 E,N,Z
6 CI DAW HN 36.271 -117.592 E,N,Z
7 CI JRC2 HH 35.982 -117.809 E,N,Z
8 CI JRC2 HN 35.982 -117.809 E,N,Z
9 CI LRL HH 35.48 -117.682 E,N,Z
10 CI LRL HN 35.48 -117.682 E,N,Z
11 CI MPM HH 36.058 -117.489 E,N,Z
12 CI MPM HN 36.058 -117.489 E,N,Z
13 CI SLA HH 35.891 -117.283 E,N,Z
14 CI SLA HN 35.891 -117.283 E,N,Z
15 CI SRT HH 35.692 -117.751 E,N,Z
16 CI SRT HN 35.692 -117.751 E,N,Z
17 CI TOW2 HH 35.809 -117.765 E,N,Z
18 CI TOW2 HN 35.809 -117.765 E,N,Z
19 CI WBM HH 35.608 -117.89 E,N,Z
20 CI WBM HN 35.608 -117.89 E,N,Z
21 CI WCS2 HH 36.025 -117.765 E,N,Z
22 CI WCS2 HN 36.025 -117.765 E,N,Z
23 CI WMF HH 36.118 -117.855 E,N,Z
24 CI WMF HN 36.118 -117.855 E,N,Z
25 CI WNM EH 35.842 -117.906 Z
26 CI WNM HN 35.842 -117.906 E,N,Z
27 CI WRC2 HH 35.948 -117.65 E,N,Z
28 CI WRC2 HN 35.948 -117.65 E,N,Z
29 CI WRV2 EH 36.008 -117.89 Z
30 CI WRV2 HN 36.008 -117.89 E,N,Z
31 CI WVP2 EH 35.949 -117.818 Z
32 CI WVP2 HN 35.949 -117.818 E,N,Z
33 PB B916 EH 36.193 -117.668 1,2,Z
34 PB B917 EH 35.405 -117.259 1,2,Z
35 PB B918 EH 35.936 -117.602 1,2,Z
36 PB B921 EH 35.587 -117.462 1,2,Z
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Table S3: Comparison of association results for picks detected by PhaseNO and PhaseNet
in the 2019 Ridgecrest earthquake sequence.

Method
Phase
picking
threshold

Total
picks

Minimum
picks in
GaMMA

Total
associated
events

Total
associated

picks

Number of
picks per
event

PhaseNO
0.3 1,379,895

12 33,142 1,126,949 34.00
15 28,624 1,068,563 37.33
17 26,176 1,030,665 39.37

0.4 1,184,681
12 28,840 976,929 33.87
15 25,039 927,736 37.05

PhaseNet
0.3 1,115,784

12 28,099 904,228 32.18
15 23,965 850,807 35.50
17 21,748 816,485 37.54

0.4 1,026,533
12 26,176 835,257 31.91
15 22,369 786,025 35.14

Table S4: Comparison of training datasets.

Method Size Region Reference

PhaseNO

57,000 graph-type samples.
About 93.75% of samples
contain both earthquake and
noise waveforms. Others are
only earthquake samples

Earthquake from
NCEDC (1984-2019);
Noise from STEAD

This study

PhaseNet 623,054 picks NCEDC (1984-2019) Zhu and Beroza, 2019

EdgePhase
12,718 graph-type earthquake
samples + 15,813 graph-type
noise samples

Pretrained with
STEAD (global);
Finetuned with
SCSN (2021)

Feng et al., 2022

EQTransformer
1M earthquake waveforms
and 300K noise waveforms

Pretrained with
STEAD (global);
Finetuned with
SCSN (2021)

Mousavi et al., 2020
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Figure S1: Comparison of the threshold sensitivity for PhaseNO, PhaseNet, EQ-
Transformer, and EdgePhase on the test dataset. We select the threshold of each
model based on the maximum F1 scores that models can achieve (stars labeled on curves).
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Figure S2: Comparison of picking errors of deep-learning models on the test
dataset. Time residuals are the travel time difference between machine-learning pickers
and manual labels. Mean (µ), standard deviation (σ) and mean absolute value (MAE) are
computed with all true positive picks, which are considered when the time residual is less
than 0.5 s compared with manual labels. In addition, precision (Pr), recall (Re) and F1-
scores are shown on each panel.
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Figure S3: Phase picking performance as a function of noise level. PhaseNO detects
the most P and S phases and the fewest false picks compared to other state-of-the-art deep-
learning models at almost all signal-to-noise ratio (SNR) levels. SNR is calculated by the
ratio of standard deviations of the 5 s following and the 5 s preceding the arrival time of P
phases.
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Figure S4: Results of two representative events in the test dataset. (a) Event
nc71112269 with the magnitude of 2.04. The manual labels of the S pick are probably wrong
on several stations of this event. (b) Event nc71112684 with the magnitude of 1.41. The
station name and epicentral distance are shown on the left part of the three-component
waveforms. PhaseNO and EdgePhase predict the results event by event, whereas PhaseNet
outputs the results station by station.
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Figure S5: More examples from the test dataset. This sample contains two events but
only the second one with the magnitude of 1.96 has manual labels.
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Figure S6: PhaseNO scaling properties as a function of the number of nodes in
one graph: memory usage and computational time for processing one-hour continuous data
that were cut into 180 30-s time windows with an overlap of 10 s. The runtime of PhaseNO
scales linearly with the duration of continuous waveforms, and the memory usage remains
constant for a fixed number of stations in a seismic network. The offline training stage is
performed only once and thus excluded from the runtime evaluation.
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Figure S7: Representative waveforms selected from one-hour continuous data
starting at 06:00:00 on July 6, 2019 from the 2019 Ridgecrest earthquake se-
quence. We compare PhaseNO and PhaseNet on a 35-s time window (240 – 275 s). The
picking threshold is 0.3. PhaseNO successfully detects phases on various shapes of waveforms
with many more picks than PhaseNet. We notice that most of the newly detected phases
are meaningful by visually checking the waveforms.

20



95 100 105 110 115 120 125
Time [s]

CI.CLC.HN
CI.CLC.HH
PB.B918.EH
CI.WRC2.HH
CI.WRC2.HN
CI.TOW2.HN
CI.TOW2.HH
CI.SRT.HN
CI.SRT.HH
PB.B921.EH
CI.WVP2.EH
CI.WVP2.HN
CI.JRC2.HN
CI.JRC2.HH
CI.WCS2.HN
CI.WCS2.HH
CI.MPM.HH
CI.MPM.HN
CI.WNM.HN
CI.WNM.EH
CI.SLA.HH
CI.SLA.HN
CI.LRL.HN
CI.LRL.HH
CI.WBM.HH
CI.WBM.HN
CI.WRV2.EH
CI.WRV2.HN
CI.CCC.HN
CI.CCC.HH
PB.B916.EH
CI.WMF.HN
CI.WMF.HH
CI.DAW.HN
CI.DAW.HH
PB.B917.EH

PhaseNO

95 100 105 110 115 120 125 130
Time [s]

PhaseNet
P probability S probability predicted P pick predicted S pick

Figure S8: Representative waveforms from the 2019 Ridgecrest earthquake se-
quence. We compare PhaseNO and PhaseNet on a 35-s time window (95 – 130 s) selected
from one-hour continuous data starting at 06:00:00 on July 6, 2019. The picking threshold
is 0.3.
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Figure S9: Representative waveforms from the 2019 Ridgecrest earthquake se-
quence. We compare PhaseNO and PhaseNet on a 35-s time window (275 – 310 s) selected
from one-hour continuous data starting at 06:00:00 on July 6, 2019. The picking threshold
is 0.3.
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Figure S10: Representative waveforms from the 2019 Ridgecrest earthquake se-
quence. We compare PhaseNO and PhaseNet on a 35-s time window (445 – 480 s) selected
from one-hour continuous data starting at 06:00:00 on July 6, 2019. The picking threshold
is 0.3.
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Figure S11: Representative waveforms from the 2019 Ridgecrest earthquake se-
quence. We compare PhaseNO and PhaseNet on a 35-s time window (3420 – 3455 s)
selected from one-hour continuous data starting at 02:00:00 on July 7, 2019. The picking
threshold is 0.3.
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Figure S12: Travel time difference between SCSN picks and picks detected by
PhaseNO or PhaseNet in the 2019 Ridgecrest earthquake sequence. The number
of picks (num) in each histogram is labeled on the panel.
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Figure S13: Comparison of the association quality of GaMMA using picks detected
by PhaseNO and PhaseNet in the 2019 Ridgecrest earthquake sequence through
the number of associated picks in one event. The maximum number of the associated
picks per event is 72 with 36 nodes used in this study (Table S2). The minimum is a
hyperparameter pre-determined in GaMMA to filter out low quality associations. Table S3
compares the total number of events in a catalog with a minimum of 12, 15, and 17 in
GaMMA.
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Figure S14: An example of an M 0.825 event detected by PhaseNO. The hypocenter
determined by GaMMA is 36.068, -117.843 with a depth of 2698 m. 10 P phases (orange
bars) and 12 S phases (cyan bars) picked with a threshold of 0.3 were associated with this
event by GaMMA. This event exists in the template matching catalog by Ross et al. but
not in other catalogs.
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Figure S15: An example of an M 1.528 event detected by PhaseNO. Red and blue
lines are the probabilities predicted by PhaseNO on continuous data. With a threshold of
0.3, PhaseNO detects 14 P- and 19 S- phases indicated by orange and cyan vertical bars,
respectively. The hypocenter determined by GaMMA is 35.862, -117.671 with a depth of
8059 m. This event exists in the template matching catalog by Ross et al. but not in other
catalogs. This event is difficult to detect using PhaseNet, probably because the first arrivals
overlap with the coda of the larger event.
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Figure S16: An example of an M 1.082 event detected by PhaseNO. The hypocenter
determined by GaMMA is 36.089, -117.849 with a depth of 295 m. 24 P phases (orange
bars) and 25 S phases (cyan bars) picked with a threshold of 0.3 were associated to this
event by GaMMA. This event was detected by both machine-learning pickers (PhaseNO and
PhaseNet) but did not exist in neither the template matching catalogs or the SCSN catalog.
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Figure S17: Example of one graph-type sample containing one event from the
training dataset. The sample records one event with eight stations. Additionally, three
virtual stations with only noise waveforms are randomly placed in the graph. In total, the
graph contains 11 nodes.
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Figure S18: Example of one graph-type sample containing two events from the
training dataset. The sample records two events by six nodes. Nodes PG.PB..EH and
PG.AR..EH record the waveforms of both events. Other nodes contain a single event. Two
virtual nodes with noise waveforms and random locations are added to the graph. Stations
PG.DC..EH and PG.DC..EL are considered as two nodes at the same location. In total, the
graph contains 8 nodes.
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Figure S19: Learning curves of PhaseNO. The loss of S phase is higher than that of P
phase, implying that S phase picking is more challenging than P phase.
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Figure S20: Prediction errors as a function of SNR, earthquake magnitude, and
epicentral distance. The colormap shows the point density. Prediction errors are com-
puted as the travel time difference between predicted phases and manually picked phases
(label). Only when the prediction error is less than 0.5 s did we consider the prediction as
true positive.
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Figure S21: Predicted probabilities as a function of prediction errors, SNR, earth-
quake magnitude, and epicentral distance. The colormap shows the point density.
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