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S U M M A R Y 

Full-wav eform inv ersion (FWI) relies on low-frequenc y data to succeed if a good initial model 
is una vailable. How ever, field seismic data excited by active sources are typically band-limited 

above 3 Hz. By extrapolated FWI, we can start inversion from computational low frequencies 
extrapolated from band-limited data. Ho wever , lo w-frequency extrapolation with deep learning 

is challenging for field data since a neural network trained on synthetic data usually generalizes 
poorly on real seismic data. Here we use a semi-super vised lear ning method to extrapolate 
low frequencies for field data by training with real data without real labels. Specificall y, b y 

training CycleGAN with unpaired images of field 4–10 Hz band-limited and synthetic 0–4 Hz 
low-frequency shot gathers, we can extrapolate the 0–4 Hz low frequencies for the field data 
band-limited above 4 Hz. The source wavelet for the simulation of synthetic low-frequency 

data is used as the source in FWI using the extrapolated data. The inv erted v elocity model 
using only the extrapolated low frequencies is comparable to the tomography model. Our 
method strengthens the ability of FWI for mapping fine Earth structures by mitigating the 
cycle-skipping problem ef fecti vel y. 

Key words: Computational seismology; Controlled source seismology; Wav eform inv ersion; 
Low-frequenc y e xtrapolation; Deep learning. 
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 I N T RO D U C T I O N  

ull-wav eform inv ersion (FWI) is well-known for its potential to
eveal the Ear th’s str uctures with high resolution by computation-
lly interpreting the seismic data. Starting from an initial guess
bout the Earth (initial model), FWI can provide physical mod-
ls b y graduall y matching the calculated data with the observed
ata, usually with an L 2 -norm objective function (Tarantola 1984 ;
ratt et al. 1998 ). Since the L 2 -norm objective function using low-
requency data is more conv e x and has fewer local minima than
hat using high-frequency data, we usually start FWI from the low-
st frequency component in the seismic data (Bunks et al. 1995 ).
o wever , seismic wav es e xcited by a conv entional activ e source

ack the low-frequency parts. FWI using the band-limited data can
asily fall into a local minimum (the cycle-skipping problem). To
itigate cycle-skipping, FWI has been reformulated through differ-

nt objective functions, such as Laplace-domain inversion (Shin &
ow at: Seismological Laborator y, Califor nia Institute of Technology, 
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ha 2008 ) and optimal transport (Engquist et al. 2016 ; M étivier
t al. 2016 ). Successful field data applications of FWI rely on
omography to build a good starting model, but this tomogra-
hy requires arduous seismic phase identification and traveltime
icking. 

The advance of artificial intelligence enables researchers to solve
nverse problems with the assistance of deep-learning methods
Richardson 2018 ; Adler et al. 2021 ). Several groups have experi-
ented with directly mapping data to models using convolutional

eural networks (Araya-Polo et al. 2018 ; Wu & Lin 2019 ; Yang &
a 2019 ; Zhang & Lin 2020 ; Feng et al. 2021 ; Kazei et al. 2021 ;
u et al. 2022 ; Geng et al. 2022 ) or generative adversarial networks

Mosser et al. 2018 ; Zhong et al. 2020 ; Sun et al. 2021 ; Cai et al.
022 ; Wang et al. 2022a ). W ithin the Bayesian seismic in version
rame work, deep generati ve models have been trained to provide
riors (Herrmann et al. 2019 ; Fang et al. 2020b ; Mosser et al.
020 ). Li et al. ( 2021 , 2022 ) propose a wide-band butterfly network
or solving wave-based inverse problems in the super-resolution
egime. He & Wang ( 2021 ), Zhu et al. ( 2022 ) and Zhang et al.
 2023 ) reparametrize FWI using deep learning frameworks. Chen
 Saygin ( 2021 ) calculate the FWI misfit in the latent space of an
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autoencoder and show that it is less affected by the cycle-skipping 
problem compared to the waveform mismatch in a high-dimensional 
space. Yang et al. ( 2021 , 2023 ) accelerate FWI with Neural Oper- 
ators. In addition, some groups propose to generate initial models 
for FWI with deep learning (Dhara & Sen 2022 ; Vantassel et al. 
2022 ; Yao & Wang 2022 ) 

Instead of directly training deep neural networks to solve in- 
verse problems, many researchers extrapolate low-frequency data 
from band-limited data with deep learning so that conventional 
FWI can benefit from the extrapolated low-frequency data (Sun 
& Demanet 2018 , 2020 ; Ovcharenko et al. 2019 ; Hu et al. 2021 ; 
Jin et al. 2022b ; Wang et al. 2022b ). Subsequently, Sun & De- 
manet ( 2022a ) and Ovcharenko et al. ( 2022 ) have extended their 
frameworks to extrapolate the low frequencies for elastic data. 
Fabien-Ouellet ( 2020 ) performs low-frequenc y e xtrapolation us- 
ing a recurrent neural network. Meanwhile, a pro gressi ve trans- 
fer learning w orkflo w is designed to modify the training data 
set using inverted models so it comes closer to the test data set 
(Zhao et al. 2020 ; Jin et al. 2022a ). Moreover, Plotnitskii et al. 
( 2020 ) choose to extrapolate the low-wavenumber components of 
the FWI gradient using deep neural networks. Nakayama & Blac- 
qui ère ( 2021 ) include low-frequency extrapolation into a multi- 
task learning w orkflo w for seismic processing. Sun & Demanet 
( 2022b ) attempt to extrapolate low frequencies for surface waves 
to increase the investigation depth of surface wave tomography. As 
for bandwidth extension to a high-frequency regime, Choi et al. 
( 2021 ) use a U-Net deep-learning model to broaden the frequency 
spectrum of high-cut-filtered seismic data. Inspired by these works 
on seismic data, Lin et al. ( 2021 ) apply low-frequency extrapola- 
tion to electromagnetic scattered field data. Robins et al. ( 2021 ) 
use the method in ultrasound computed tomography to image the 
breast with more diagnosticall y rele v ant quantitati ve tissue proper- 
ties. 

Only a few attempts of low-frequency extrapolation have been 
tried on field data. Aharchaou & Baumstein ( 2020 ) extrapolate the 
low frequencies for towed-streamer data band-limited above 4 Hz 
using deep neural networks trained on 1–4 Hz field data recorded by 
an ultrasparse set of ocean-bottom nodes. Zhang et al. ( 2022b ) re- 
cover low frequencies for field data from post-stack data and use the 
e xtrapolated low-frequenc y data to inv ert the P -wav e impedance. 
Ho wever , the training and test data sets in both field-data studies 
are collected from the same re gion. Mov eov er, Wang et al. ( 2020 ) 
propose a self-supervised learning method for low-frequency ex- 
trapolation and show its performance on field seismic shot gath- 
ers without FWI results. Fang et al. ( 2020a ) compare both FWI 
and reverse-time migration results on field data with and without 
low-frequency data predicted by the neural network trained on the 
Marmousi model. Ovcharenko et al. ( 2022 ) simultaneously predict 
low-frequency data and background velocity models with multi- 
task learning and show the performance on a field marine data 
set. 

If we process real seismic data with a supervised learning frame- 
work, w e ma y train the neural network on either real or synthetic 
data. Training on synthetic data may introduce large generalization 
errors when applying the trained neural network to real seismic data. 
Thus, a target-orientated synthetic training data set has to be care- 
fully designed to improve the generalizability of the neural network 
to the target real data. For example, Alkhalifah et al. ( 2022 ) pro- 
pose a series of data processing operations to introduce similarity 
to data distributions between synthetic training and real applica- 
tion data sets (Zhang et al. 2022a ). Alternati vel y, training on real 
data may enable the neural network to perform better on field data, 
due to a smaller generalization gap. Ho wever , real labels, especially 
low-frequency field data, are generally unavailable. 

In this work, we propose a w orkflo w of lo w-frequenc y e xtrap- 
olation for field band-limited data. To solve the problem of miss- 
ing real low-frequency data for training, we train CycleGAN (Zhu 
et al. 2017 ), a semi-supervised learning method, using unpaired 
images of field band-limited shots, { h i } N i= 1 , h i ∈ H and synthetic 
low-frequency shots, { l i } M 

i= 1 , l i ∈ L , in the time domain. In partic- 
ular, ‘unpaired’ means that the correspondence between h i and l i 
does not exist and there is no information provided as to which 
h i matches which l i . Our field data example shows that the Cycle- 
GAN trained with only synthetic low-frequency shot gathers is able 
to extrapolate the low-frequency data for field data. Since a well- 
trained generative model creates data under the similar distribution 
as the training data in the output domain (the low-frequency shot 
gathers), we use the low-frequency wavelet in the simulation of the 
synthetic low-frequency data as the source signature for FWI with 
the extrapolated low frequencies. The inverted low-wavenumber 
velocity model is comparable with the benchmark model obtained 
b y tomo graphy and geolo gical correction in the same w avenumber 
range. 

2  M E T H O D  

2.1 Low-fr equenc y extra polation with semi-supervised 

learning 

We formulate low-frequency extrapolation from band-limited data 
as an image-to-image translation problem. The source domain H 

contains 2-D images of the band-limited shot gathers { h i } N i= 1 and the 
target domain L is a collection of 2-D images of low-frequency shot 
gathers { l i } M 

i= 1 . Both input h and output l have equi v alent dimensions 
of nt × ntr where nt and ntr are the number of time samples in each 
trace and the total number of recei vers, respecti vel y. Our goal is to 
learn a mapping function from an input high-frequency image to its 
output low-frequency image. 

Learning the task of image-to-image translation with a supervised 
method requires paired training data, where the correspondence be- 
tween h i and l i exists. Compared to training with synthetic data, 
training the neural network with real data can reduce the general- 
ization error and provide much better performance when we apply 
the neural network to field data. Ho wever , the lack of availability of 
the low frequencies make it difficult to train the neural network with 
field data in a supervised manner. To solve the problem of missing 
real low-frequency data as labels when training directly with field 
data, we use Cycle-Consistent Adversarial Networks (CycleGAN 

(Zhu et al. 2017 )), a semi-supervised method to learn a mapping 
from input to output images from unpaired training data. Specif- 
ically, ‘unpaired’ means that the high-frequency data h i and low- 
frequency data l i do not belong to the same shot gather. 

Fig. 1 summarizes the flowchart of the CycleGAN. The Cycle- 
GAN contains two generators, G HL : H → L and G LH : L → H , and 
associated adversarial discriminators, D L and D H . Since each sam- 
ple in H is unlabelled, no explicit loss exists between G HL ( H ) and 
L . Instead, G HL is trained via D L to generate images from domain 
H indistinguishable from domain L by an adversarial loss of G HL 

and D L . Since training with unpaired images is highly undercon- 
strained, we couple G HL : H → L with an inverse mapping G LH : L → 

H and introduce a c ycle consistenc y loss to enforce G LH ( G HL ( H )) 
≈ H (and vice versa). Likely, D H encourages G LH to generate im- 
ages from domain L indistinguishable from domain H by training 
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real image in domain H fake image in domain L reconstructed image in domain H

cycle-consistency loss

real image in domain L

real or fake ?

real image in domain L fake image in domain H reconstructed image in domain L

cycle-consistency loss

real image in domain H

Figure 1. Flowchart of seismic bandwidth extension using CycleGAN. The deep-learning model contains two generators and two discriminators. Generator 
G HL extrapolates low frequencies from their input high-frequency shot gathers in domain H . Discriminator D L distinguishes between real and fake low-frequency 
shot gathers in domain L . Likewise, generator G LH translates one low-frequency shot gather to its high-frequency counterpart. Discriminator D H distinguishes 
between real and fake high-frequency shot gathers. 

Figure 2. Source wavelets (a) in the time domain and (b) in the frequency domain. The band-limited data in the synthetic Marmousi experiment are simulated 
using the band-limited wavelet with f min = 4 Hz and f max = 10 Hz. The wavelet with f min = 0 Hz and f max = 4 Hz is the source signal S ( t ) for the simulation 
of synthetic low-frequency shot gathers for both the Marmousi synthetic example and the field-data example. 
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n adversarial loss of G LH and D H . The specific formulas of the
dversarial loss and cycle consistency loss of G HL , G LH , D L and D H 

re in the Appendix. 
After training, we feed the band-limited data into G HL and extrap-

late the low frequencies of the field data shot by shot. The generated
mages are computational low frequencies of the field data. They
ontain information about the propagation media and can be used to
nfer the Ear th str uctures. Since the adversarial loss is optimized to
atch the distribution of generated images to the data distribution
n the target domain, the generated images share the same source
ignature and frequency components as the synthetic shot gathers
n the target domain. 

.2 Training data sets 

e design two examples to illustrate the w orkflo w of our method:
ne synthetic example simulated on the Marmousi model and one
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Figure 3. A low-pass filter with f min = 0 Hz and f max = 4 Hz and a high-pass 
filter with f min = 4 Hz and f max = 10 Hz. The high-pass filter is applied to 
the field data for preparing the 4–10 Hz band-limited data, that is the input 
high-frequency shot gathers in domain H . 

thetic band-limited wavelet seems to be sufficient for the inversion 
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field-data example from a marine field data set. The marine field 
data set contains 428 shots. Each shot is recorded by 648 receivers 
with an interval of 12.5 m. The total recording time is 6.6 s with a 
sampling rate of 6 ms. For simplicity, all simulations are performed 
using the same acquisition geometry and sampling rate as the field 
data. 

The input high-frequency shot gathers in domain H come from the 
band-limited data for FWI. For the Marmousi example, we assume 
that data below 4 Hz are totally missing from the observed data and 
directly simulate 4–10 Hz band-limited data using a band-limited 
wavelet (blue dash line in Fig. 2 ). For the field data set, we apply 
a smooth high-pass filter (blue dash line in Fig. 3 ) to the field data 
and obtain 4–10 Hz band-limited shot gathers for the collection of 
H . We preprocess the raw field data shot-by-shot following these 
steps: 

(i) Perform dip filtering to remove noise in the f − k domain. 
(ii) Filter the data into 4–10 Hz in the frequency domain. 
(iii) Mute and remove everything before the approximated first 

arri v als in the time domain. 

Each shot gather is considered as one sample in the input image 
domain H of the training data set. 

To prepare images of synthetic shot gathers in L , we perform 

forward modelling by solving wave equations to simulate the low- 
frequency shot gathers. The source wavelet S ( t ) contains only com- 
ponents in the target low-frequency range. To enrich the shot gathers 
in the training data set, we should design the training models with 
reasonable geological structures. The prior knowledge of the model 
that is being inverted, for instance, the water bottom depth, can be 
used when designing the training models. 

We select two training models for the simulation of synthetic low- 
frequency shot gathers in L : one slice of the SEG/EAGE Over thr ust 
model (Fig. 4a) for the Marmousi example and one von-Karman 
type random model (Fig. 4b) for the field-data example. The ran- 
dom model is a superposition of von-Karman type random media 
with a 1-D linear velocity model where velocities range from 1500 to 
3000 m s −1 and are linearly increased with depth. With the same ac- 
quisition geometry as the field data, we simulate 428 low-frequency 
shot gathers on each training model by solving an isotropic acoustic 
wave equation. The wavelet (Fig. 2 ) with f min = 0 Hz and f max = 4 Hz 
is the source signal for the simulation of synthetic low-frequency 
shot gathers. 
To train the neural network ef ficientl y, we preprocess both real 
band-limited and synthetic low-frequency shot gathers with the fol- 
lowing steps. First, all shot gathers are downsampled by a factor 
of three in the time axis to reduce the computation cost. After 
downsampling, the new sampling rate of each trace is 18 ms. Each 
image has a dimension of nt = 364 and ntr = 648. Secondly, 
all shot gathers are weighted by gain ( t ) = te 0.5 t to enhance the 
amplitudes of e vents arri ving at a later time. Thirdly, all shots 
are normalized to one by dividing by the maximum amplitude 
trace-by-trace, which helps to compensate for weaker amplitudes 
at further offsets. Note that it is not necessary to recover the orig- 
inal amplitudes if FWI uses an amplitude-insensitive cost func- 
tion. 

2.3 Networ k ar chitectur e and training procedur e 

We adopt the neural network architecture from Zhu et al. ( 2017 ), 
which has shown great performance on many image-to-image trans- 
lation tasks with unpaired labels. The generator sequentially con- 
tains one 7 × 7 convolutional layer (64 channels), two downsam- 
pling blocks (128 and 256 channels), nine residual blocks (256 
channels in each block), two upsampling blocks (256 and 128 chan- 
nels), and another 7 × 7 convolutional layer with one channel that 
maps feature to an output image. Each downsampling block contains 
one 3 × 3 conv olutional lay er with a stride of two. Each upsampling 
block carries one 3 × 3 transpose convolutional layer with a stride 
of two. We use reflection padding before convolution and instance 
normalization after convolution. For the discriminator, we use four 
4 × 4 Conv olution-InstanceNorm-LeakyReLU lay ers with a stride 
of two except the last lay er w here we use a stride of one. There are 
64, 128, 256 and 512 filters, respecti vel y, on the four convolutional 
layers. Instance normalization is used after conv olutional lay ers ex- 
cept for the first layer. The slope of the leaky ReLUs is 0.2. We use 
a conv olutional lay er with one channel and a stride of one as the 
output layer to predict labels of one on ‘real’ images and zero on 
‘fake’ images (see the Appendix). 

During training, we use adaptive moment estimation (Adam, 
Kingma & Ba 2014 ) to simultaneously update G HL , G LH , D L and D H 

from scratch with a mini-batch of one. In practice, we slow down 
the update of discriminators compared with generators by divid- 
ing their loss functions by five while optimizing the discriminators. 
The learning rate is set as 2 × 10 −5 . Weights are initialized from a 
Gaussian distribution with zero mean and a standard deviation of 
0.02. 

2.4 Extrapolated FWI 

With the e xtrapolated low-frequenc y data, we are able to mitigate the 
cycle-skipping problem of FWI on an uninformative initial model 
using extrapolated FWI (Li & Demanet 2016 ; Sun & Demanet 
2020 ). Extrapolated FWI contains tw o in version stages. In the first 
stage, we perform FWI using the generated low-frequency data and 
the designed source wavelet S ( t ). Low-frequency data are much less 
af fected b y the cycle-skipping problem of FWI and can thus provide 
a good initial model for the subsequent inversion using band-limited 
data. In the second stage, with the resulting low-wav enumber v e- 
locity model from the first inversion stage, we perform FWI with 
band-limited data to resolve finer velocity structures of the subsur- 
face. We can extract another source wavelet from the field data for 
the inversion of band-limited data. However, in our example, a syn- 
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(a)

(b)

Figure 4. Training models for the simulation of synthetic low-frequency shot gathers. (a) One slice of the SEG/EAGE over thr ust model for the Marmousi 
example. The model has been extended from both sides. (b) Random media characterized by a von Karman correlation function for the field-data example. 

(a)

(b)

Figure 5. Synthetic data example: (a) Marmousi model and (b) linear initial velocity model. 
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Figure 6. Comparison of 4–10 Hz band-limited data, 0–4 Hz extrapolated low-frequency data, and 0–4 Hz simulated low-frequency data. 

(a)

(b)

Figure 7. FWI results started from the linear initial velocity model with only (a) 0–4 Hz e xtrapolated low-frequenc y data and (b) 0–4 Hz simulated low-frequency 
data for the Marmousi model. A multiscale approach is used by first performing the inversion with 0–2 Hz and then 0–4 Hz data. 
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of the band-limited field data. We choose the L 2 norm of the nor- 
malized (trace by trace) difference in time domain as the objective 
function of FWI in both inversion stages (Shen 2010 , 2014 ). With 
this objective function, the observed data and calculated data have 
approximately the same relative amplitudes, making the inversion 
focus more on phase comparison. 
3  N U M E R I C A L  R E S U LT S  

In this section, we demonstrate the performance of low-frequency 
extrapolation with the semi-supervised learning method using both 
synthetic and field-data experiments. For the synthetic experi- 
ment, we e v aluate extrapolation results b y directl y comparing with 

art/ggad330_f6.eps
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(a)

(b)

(c)

Figure 8. FWI results using 4–7 Hz band-limited data. (a) EFWI result started from the low-wavenumber velocity model from only 0 to 4 Hz extrapolated 
low-frequency data in Fig. 7 (a). (b) FWI result started from the low-wavenumber velocity model from 0 to 4 Hz simulated low-frequency data in Fig. 7 (b). (c) 
FWI result directly started from the linear initial velocity model in Fig. 5 (b). 
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imulated low frequencies. As for the field data, since real low fre-
uencies are una vailable, w e e v aluate results b y comparing FWI
esulting models with a benchmark model obtained by tomography
ollowed with human correction and interpretation. 

.1 Synthetic data example: Marmousi model 

e use the P -wave velocity of the Marmousi 2 model as the true
odel for the synthetic experiment (Fig. 5 a).The starting model is
 1-D linear velocity model where velocities are linearly increased
ith depth from the water bottom to the maximum depth (Fig. 5 b).
fter training with the over thr ust training data set, we feed the
–10 Hz band-limited data to the trained generator G HL for the
xtrapolation of 0–4 Hz low-frequency data shot-by-shot. 

Fig. 6 compares the 4–10 Hz input band-limited data, 0–4 Hz ex-
rapolated low-frequency data and 0–4 Hz simulated low-frequency
ata for one shot on the Marmousi model. We observe that the
xtrapolated result shares comparable low-frequency ranges as
he simulated ones. The arri v al time of several events with large
mplitude aligns well with their high-frequency counterparts on
he band-limited shot gather. Ho wever , some mismatches exist
etween extrapolation and simulation, especially for events with
eak amplitudes. Although e xtrapolation accurac y depends on net-
ork architecture, loss formulation, and other hyperparameters
f learning, we speculate that low-frequency extrapolation with
emi-super vised lear ning seems to be less constrained compared
o super vised-lear ning methods, and thus we should expect an ap-
roximation of the low-frequency signals rather than the exact low-
requenc y ev ents as those simulated directly with a low-frequency
avelet. 
Fig. 7 compares FWI results started from the 1-D linear ini-

ial velocity model with only 0–4 Hz extrapolated and simulated

art/ggad330_f8.eps
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Figure 9. Field-data properties. Comparison of one shot gather from the field data in the 0–2Hz, 2–3 Hz, 3–4 Hz and full bands (raw data). The data below 

3 Hz are fully contaminated by noise. The effective signal starts to be visible in the 3–4 Hz band and becomes clear in the band above 4 Hz. 

(a)

(b)

Figure 10. (a) The benchmark model of the field data obtained by reflection travel-time tomography following additional human interpretation and correction. 
(b) An uninformative initial model which is far from the benchmark model. 
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low-frequency data. A multiscale approach is used by first perform- 
ing the inversion with 0–2 Hz and then 0–4 Hz data. Despite the 
mismatch between extrapolated and simulated low frequencies, the 
FWI result with only extrapolated 0–4 Hz data shares similar veloc- 
ity structures as the result with simulated data. Ho wever , without 
re gularization, inv ersion with only extrapolated data shows high- 
frequency artefacts, owing to the imperfect extrapolation. 
With the low-wavenumber results as initial models, we continue 
inversion with 4–7 Hz band-limited data. Compared with the in- 
version result started from the 0–4 Hz simulated data (Fig. 8 b), 
FWI started from the extrapolated data (Fig. 8 a) reveals several 
major velocity structures similar to those from the true data. How- 
e ver, ine vitable extrapolation errors with the less constraint semi- 
super vised lear ning approach bring inversion artefacts to the result- 
ing model from only the extrapolated data. Thus, it is challenging 
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(a)

(b)

(c)

Figure 11. Determination of the starting frequency band to avoid cycle-skipping of FWI for the field data using the uninformative initial model in Fig. 10 b. 
FWI results using synthetic data simulated on the benchmark model in Fig. 10a. The maximum frequencies of the synthetic data are (a) 4 Hz, (b) 3 Hz and (c) 
2 Hz, respecti vel y. In each result, we use the same source w avelets in both forw ard modelling and inversion. The maximum starting frequency should be less 
than 2 Hz for FWI with the uninformative initial model. 
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or FWI with band-limited data to deal with the artefacts in the

nitial model. Regularization for the inversion with only extrapo-
ated data may be helpful to mitigate this problem. Nevertheless,
ompared with the inversion result directly started from the linear
nitial model (Fig. 8 c), the extrapolated data mitigate the cycle-
kipping problem for the inversion with the linear initial model
o a large extent. The synthetic experiment confirms the ef fecti ve-
ess of our method to relieve the dependence of FWI on initial
odels. 

.2 Field-data example 

e use a field seismic data set recorded by a streamer surv e y in
 marine environment to illustrate the performance of our method.
ig. 9 shows one shot gather from the field data set. We first check
he minimum available frequencies of the field data. Data below
 Hz are fully contaminated by noise. The effective signal starts to
e visible in the 3–4 Hz band and becomes clear in the band above
 Hz (Fig. 9 ). Hence, we decide to remove the data below 4 Hz from
he raw shot gather and use 4–10 Hz data to extrapolate the low
requencies below 4 Hz. 

A conv entional v elocity model building w orkflo w contains both
omography and FWI when tomography provides an initial model
or the subsequent FWI. Fig. 10 (a) shows the tomography result
f the field data. The tomography model is obtained by reflection
raveltime tomography following additional human effort to correct
he boundary of the high-velocity layer in the deep area. Using the
omography model as a benchmark, the goal of our work is to build
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Figure 12. Learning curves after training with 40 epochs for the field-data example. (a) Generator loss of L LSGAN ( G H L , H ) and L LSGAN ( G L H , L ) . (b) 
Discriminator loss of L LSGAN ( D L , H, L ) and L LSGAN ( D H , H, L ) . (c) Forward c ycle-consistenc y loss L cycle ( G H L , G L H , H ) and backward c ycle-consistenc y 
loss L cycle ( G L H , G H L , L ) . (d) Identity loss L identity ( G H L , L ) and L identity ( G L H , H ) . 
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an initial model for FWI using only the extrapolated low-frequency 
data. The e xtrapolated low-frequenc y data are meaningful if the 
FWI result starts with the uninformative initial model (Fig. 10 b) 
and using only the extrapolated low-frequency data is comparable 
with the tomography model in the same wavenumber range. 

3.2.1 Determination of starting frequency band to avoid 
cycle-skipping 

The low-frequency data below 4 Hz are missing from the field data. 
FWI may suffer from the cycle-skipping problem if we directly use 
0–4 Hz extrapolated data in inversion given the poor initial model 
(Fig. 10 b). Hence, we perform a benchmark test using synthetic 
low-frequency data simulated on the benchmark model to deter- 
mine the starting frequency band for FWI. First, we simulate 0–
2 Hz, 0–3 Hz and 0–4 Hz ‘observed’ data on the benchmark model 
using low-frequenc y wav elets with maximum frequencies of 2, 3 
and 4 Hz, respecti vel y. Then, we perform FWI using the synthetic 
‘observed’ data to recover the benchmark model starting with the 
given initial model. With only P -wave velocities, both forward mod- 
elling and inversion are performed using an isotropic acoustic wave 
equation. 

The benchmark result shows that strong artefacts exist on the 
inverted models (Figs 11 a and 11 b) using the synthetic 0–4 Hz or 
0–3 Hz data. Instead, in spite of small artefacts, FWI using 0–2 Hz 
synthetic low-frequency data can reconstruct the low wavenumber 
velocity structure of the benchmark model (Fig . 11 c). Therefore, 
we need to seed FWI using 0–2 Hz low-frequency data given the 
uninformative initial model for the field data. 

3.2.2 Frequency extrapolation and FWI results 

Fig. 12 shows the lear ning cur ves after training with 40 epochs 
for the field data. Because of the adversary between generators 
and discriminators, the discriminator tends to predict an average 
probability of 0.5 on both real and fake images if the neural networks 
are well-trained. With a scale factor of 0.1, the discriminator loss 
should finally stabilize around 0.1 × [(1 − 0.5) 2 + (0 − 0.5) 2 ] = 

0.05 (eqs A.2 and A.8) where 1 and 0 are the labels for real and 
fake images, respecti vel y (the Appendix). Like wise, the generator 
loss should stabilize around (1 − 0.5) 2 = 0.25 (eqs A.1 and A.10). 
Both generator losses ( G HL and G LH ) and discriminator losses ( D L 

and D H ) stabilize around the expected values, which indicates that 
D L and D H approximately output an average probability of 0.5 on a 
real image, as well as an average probability of 0.5 on a fake image. 
A well-trained CycleGAN model would generate images that share 
the same characteristics as the provided synthetic low-frequency 
images and real high-frequency images. 

After training the CycleGAN with synthetic shot gathers in the 
band of 0–4 Hz, we extrapolate the 0–4 Hz data from the field 4–
10 Hz band-limited data. Fig. 13 shows results of the CycleGAN 

trained with 40 epochs for the extrapolation of 0 − 4 Hz data. For 
the purpose of quality control, we check both forward and back- 
ward cycle consistencies using two shot gathers randomly selected 
from field band-limited and synthetic low-frequency data sets, re- 
specti vel y. G LH ( G HL ( h )) ≈ h and G HL ( G LH ( l )) ≈ l are approximately
satisfied on the results. Ho wever , we observe that G LH ( G HL ( h )) did 
not recover all the information on h , implying that the extrapolation 
from low to high frequencies is harder than the opposite direc- 
tion. Even so, G LH ( l ) seems to provide sufficient high-frequency 
information for G HL to recover l . Overall, the positions of the low- 
frequenc y ev ents are comparable with those on the band-limited 
shot gathers. Since the low-frequency data below 4 Hz are missing, 
it is impossible to check the accuracy of the extrapolated data by 
comparing them with the real data. Hence, we perform FWI using 
the extrapolated data and compare the results with models inverted 
using synthetic data simulated on the benchmark model to check 
the reliability of our extrapolation. 
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(a)

(b)

Figure 13. Frequency extrapolation results for the field data: (a) Forward cycle starting from 4–10Hz field band-limited data, h → G HL ( h ) → G LH ( G HL ( h )). The 
second column shows the resulting 0–4Hz data extrapolated from the field band-limited data. (b) Backward cycle starting from 0–4Hz synthetic low-frequency 
data, l → G LH ( l ) → G HL ( G LH ( l )). The cycle consistency loss enforces G LH ( G HL ( h )) ≈ h and G HL ( G LH ( l )) ≈ l . 
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We perform FWI using the 0–4 Hz extrapolated data. The wavelet
ith f min = 0 Hz and f max = 4 Hz (Fig. 2 ) is used as the source sig-
ature. The extrapolated data generated by the neural network are
irectly used in FWI without post-processing. Owing to inevitable
rrors in extrapolation, we remove artefacts less than 500 m by
moothing the gradients calculated using the extrapolated data dur-
ng inversion. Since the starting frequency band should not be larger
han 2 Hz on the given initial model (Fig. 10 b), we perform inversion
rstly with 0–2 Hz data and then continue with 0–4 Hz data. Starting
ith the uninformative initial model, Fig. 14 a shows the FWI result
sing only 0–4 Hz extrapolated data. The inverted model is com-
arable with the FWI result (Fig. 14 b) using the simulated 0–4 Hz
ata on the tomography model, which means that the accuracy of the
xtrapolated 0–4 Hz data is sufficient to build a low-wavenumber
elocity model from the uninformative initial model. 

Starting with the low-wavenumber velocity models in Fig. 14 , we
ontinue FWI using 3–10 Hz band-limited field data with a mul-
iscale approach. In par ticular, FWI star ting with the extrapolated
ow-frequency data successfull y re veals the positions of gas clouds
ndicated by the low velocity zones (Fig. 15 a). The inversion results
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(a)

(b)

Figure 14. Comparison of FWI results started from the uninformative linear velocity model (Fig. 10 b) using (a) extrapolated 0–4 Hz data and (b) synthetic 
0–4 Hz data simulated on the benchmark model (Fig. 10 a). In each result, we use a multiscale approach (Bunks et al. 1995 ) with 0–2 Hz and 0–4 Hz data. 
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starting with the 0–4 Hz extrapolated data and 0–4 Hz simulated 
data on the tomography model are very similar. Ho wever , FWI di- 
rectly from the uninformative initial model using the band-limited 
field data falls into a local minimum and cannot reconstruct the cor- 
rect geological structures for this area (Fig. 15 c). Fig. 16 compares 
calculated and observed data before and after FWI using 3–6 Hz 
band-limited data. We clearly see cycle-skipping of events in FWI 
initiated without low frequencies. By contrast, less cycle-skipping 
exists in the inversion initiated with extrapolated low frequencies, 
which is consistent with the inversion initiated with simulated low 

frequency data. The inversion results with field data demonstrate 
that the e xtrapolated low-frequenc y data are reliable to mitigate 
the cycle-skipping problem of FWI starting with an uninformative 
initial model with band-limited data. 

3.3 Discussion and limitations 

3.3.1 Influence of training models on extrapolation accuracy 

Our previous work (Sun & Demanet 2020 ) shows that the neu- 
ral network trained for low-frequency extrapolation can generalize 
among very different geological structures (i.e. from a layer to a 
salt model). In this field data example, we also investigate the in- 
fluence of training models on e xtrapolation accurac y. In addition 
to the training model which resembles salt structures, we also train 
the neural network on synthetic data simulated on the Marmousi 
model. Following the same procedure, we perform FWI using the 
low-frequency data extrapolated by the neural network trained on 
the Marmousi model. Although the background velocity is correctly 
decreased from the initial model, inversion artefacts occur on the 
sides of the model. The extrapolation accuracy of the shot gath- 
ers at these locations where artefacts exist is not as good as those 
trained on the random model. Comparing with the results in Sun & 

Demanet ( 2020 , 2022a ), we speculate that shot-by-shot extrapola- 
tion is more difficult to generalize than trace-by-trace extrapolation 
since the hidden geological information on the shot gathers may be 
remembered by the neural network. Therefore, the training models 
in the shot-by-shot experimental setup should be more diverse and 
include representative geological structures as in the model that is 
being inverted. 

3.3.2 Stability of extrapolation: variations among epochs 

Without regularization, FWI results from the conventional L 2 -norm 

misfit are very sensitive to the accuracy of the extrapolated low- 
frequency data. If the neural network is not well trained, the low- 
frequency data generated by the neural network may vary among 
epochs. In addition to checking the generated shot gathers, it is 
necessary to compare the FWI results on generated data among 
different epochs and then decide on a good solution. If the neu- 
ral network is well trained, inversion should be stable among 
epochs. 

3.3.3 Limitations and future work 

The method proposed in this study directly uses field band-limited 
data as one part of the training data set. As a result, we may need 
to retrain the neural networks from scratch to achieve superior 
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(a)

(b)

(c)

Figure 15. Comparison among FWI results using 3–10 Hz field band-limited data. In (a), the resulting model starts with the low-wav enumber v elocity model 
inverted using 0–4 Hz extrapolated data (Fig. 14 a). In (b), the resulting model starts with the low-wavenumber velocity model inverted using the 0–4 Hz 
synthetic data simulated on the benchmark model (Fig. 14 b). In (c), the starting model is the uninformative initial model (Fig. 10 b). 
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erformance on each new field data set. Since training is much

ore time-consuming than testing, the proposed method may not
e efficient when applied to a large 3-D seismic data volume. Ran-
omly selecting partial shot gathers from the whole field data set
s a training data set may be sufficient to train the neural networks.
o wever , the extrapolation accuracy of the remaining unseen shot
athers may be degraded, depending on the generalization ability
f the designed neural network. 

Due to inevitable errors of extrapolation, involving more fake
ata before real data may accumulate inversion errors during the
requency sweep of FWI. Monitoring the inversion results using
ake data is therefore crucial to build a reasonable initial model
or inversion with band-limited data. Otherwise, we may continue
o modify the architecture of generators and discriminators within
he CycleGAN framework in order to improve the extrapolation
ccuracy. 

Another undetermined factor that may change the extrapolation
ccuracy is attenuation. Since the neural networks are trained to
enerate data under the distribution of output data, only features
hat exist in the synthetic output data can be learned during the
raining procedure. Since our synthetic low-frequency shot gathers
re simulated with an isotropic wave equation, the neural network
a y ha ve to learn to explain attenuation and anisotropy effects

resent in real data but under the isotropic acoustic approximation.
he extrapolated data may be contaminated by this lack of physics

f the implicit data conversion is not ef fecti ve. Howe ver, it is un-
lear if accounting for real physics in simulation would provide a
etter performance since learning wavefield conversion in addition
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to extrapolation would be more complex. Fur ther more, attenuation 
is frequency-dependent. Hence, it is necessary to study how atten- 
uation may affect low-frequency extrapolation, which we leave for 
future work. 

4  C O N C LU S I O N S  

We propose a semi-supervised learning method to extrapolate the 
missing low-frequency data from field band-limited data in an 
activ e-source seismic surv e y. With unpaired images of field band- 
limited and synthetic low-frequency shot gathers simulated on train- 
ing models, we can train the CycleGAN for low-frequency extrap- 
olation of the field data without real labels. Although we directly 
use the field data in training, real low-frequency data are not re- 
quired. The FWI result using only the 0–4 Hz extrapolated data 
is comparable with that using 0–4 Hz synthetic data simulated on 
the benchmark model. The wavelet to simulate the synthetic low- 
frequency data on the training model should be used for FWI using 
the extrapolated low frequencies. An amplitude-insensitive objec- 
tive function is preferred for FWI since the original amplitudes may 
be lost during pre-processing. Our field data results validate that 
the extrapolated data are reliable for building a low wavenumber 
velocity model and for mitigating the cycle-skipping problem of 
FWI starting with an uninformative initial model. 

A C K N OW L E D G M E N T S  

We thank the editor Andrew Valentine and three anonymous re- 
viewers for providing valuable suggestions. This research is funded 
by TotalEnergies. HS is also supported by MIT MathWorks Science 
Fellowship. We thank Fuchun Gao, Mohamed Dolliazal and Rus- 
sell Jones for additional technical support of this work. We thank 
TotalEnergies for permission to publish this work. 

DATA  AVA I L A B I L I T Y  

The data underlying this research belong to TotalEnergies and can- 
not be shared publicly. 

art/ggad330_f16.eps


Learning with real data without real labels 1775 

R

A  

 

A  

 

A  

 

A  

B  

C  

 

 

C  

 

C  

 

D  

 

D  

 

E  

F  

 

 

F  

 

 

F  

F  

 

G  

 

H  

H  

 

H  

 

J  

 

 

J  

 

K  

 

K  

L  

 

L  

 

L  

L  

 

 

M  

 

M  

 

 

 

M  

 

M  

 

 

N  

 

 

O  

 

O  

 

P  

 

 

 

P  

 

R  

R  

 

S  

 

S  

 

S  

S  

 

S  

S  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/235/2/1761/7246881 by guest on 08 August 2024
E F E R E N C E S  

dler , A. , Araya-Polo, M. & Poggio, T., 2021. Deep learning for seismic
in verse problems: to w ard the acceleration of geophysical anal ysis work-
flows, IEEE Sig. Process. Mag., 38 (2), 89–119. 

harchaou , M. & Baumstein, A., 2020. Deep learning-based artificial band-
width extension: training on ultrasparse OBN to enhance towed-streamer
FWI, Leading Edg e , 39 (10), 718–726. 

lkhalifah , T. , Wang, H. & Ovcharenko, O., 2022. MLReal: bridging the gap
between training on synthetic data and real data applications in machine
learning, Artif. Intell. Geosci., 3, 101–114. 

raya-Polo , M. , Jennings, J., Adler, A. & Dahlke, T., 2018. Deep-learning
tomography, Leading Edg e , 37 (1), 58–66. 

unks , C. , Saleck, F. M., Zaleski, S. & Chavent, G., 1995. Multiscale seismic
wav eform inv ersion, Geophysics, 60 (5), 1457–1473. 

ai , A. , Qiu, H. & Niu, F., 2022. Semi-supervised surface wave tomography
with Wyzasserstein cycle-consistent GAN: method and application to
Souther n Califor nia Plate Boundar y Region, J. geophys. Res., 127 (3),
e2021JB023598, doi:10.1029/2021JB023598. 

hen , Y. & Saygin, E., 2021. Seismic inversion by hybrid machine
learning, J. geophys. Res.: Solid Earth, 126 (9), e2020JB021589,
doi:10.1029/2020JB021589. 

hoi , Y. , Jo, Y., Seol, S.J., Byun, J. & Kim, Y., 2021. Deep learning spec-
tral enhancement considering features of seismic field data, Geophysics,
86 (5), 1–60. 

hara , A. & Sen, M.K., 2022. Physics-guided deep autoencoder to overcome
the need for a starting model in full-waveform inversion, Leading Edg e ,
41 (6), 375–381. 

u , M. , Cheng, S. & Mao, W., 2022. Deep-learning-based seismic variable-
size velocity model building, IEEE Geosci. Remote Sens. Lett., 19,
1–5. 

ngquist , B. , Froese, B.D. & Yang, Y., 2016. Optimal transport for seismic
full waveform inversion, Commun. Math. Sci., 14 (8), 2309–2330. 

abien-Ouellet , G. , 2020. Low-frequency generation and denoising with
recursive convolutional neural networks, in SEG Technical Pr ogr am Ex-
panded Abstracts 2020, pp. 870–874, Society of Exploration Geophysi-
cists. 

 ang , J . , Zhou, H., Elita Li, Y., Zhang, Q., Wang, L., Sun, P. &
Zhang, J., 2020a. Data-driven low-frequency signal recovery using
deep-learning predictions in full-waveform inversion, Geophysics, 85 (6),
A37–A43. 

 ang , Z. , F ang, H. & Demanet, L., 2020b. Deep generator priors for Bayesian
seismic inversion, Adv. Geophys., 61, 179–216. 

eng , S. , Lin, Y. & Wohlberg, B., 2021. Multiscale data-driven seismic full-
wav eform inv ersion with field data study, IEEE Trans. Geosci. Remote
Sens., 60, 1–14. 

eng , Z. , Zhao, Z., Shi, Y., Wu, X., Fomel, S. & Sen, M., 2022. Deep
learning for velocity model building with common-image gather volumes,
Geophys. J. Int., 228 (2), 1054–1070. 

e , Q. & Wang, Y., 2021. Reparameterized full-wav eform inv ersion using
deep neural networks, Geophysics, 86 (1), V1–V13. 

errmann , F.J. , Siahkoohi, A. & Rizzuti, G., 2019. Learned imaging
with constraints and uncertainty quantification, preprint (arXiv preprint
arXiv:1909.06473). 

u , W. , Jin, Y., Wu, X. & Chen, J., 2021. Pro gressi ve transfer learning for
low-frequency data prediction in full waveform inversion, Geophysics,
86 (4), 1–82. 

in , Y. , Hu, W., Wang, S., Zi, Y., Wu, X. & Chen, J., 2022a. Efficient pro-
gressive transfer learning for full-waveform inversion with extrapolated
low-frequency reflection seismic data, IEEE Trans. Geosci. Remote Sens.,
60, doi:10.1109/TGRS.2021.3129810. 

in , Y . , Zi, Y ., Hu, W., Hu, Y., Wu, X. & Chen, J., 2022b. A robust learning
method for low-frequency extrapolation in gpr full waveform inversion,
IEEE Geosci. Remote Sens. Lett., 19, 1–5. 

azei , V. , Ovcharenko, O., Plotnitskii, P., P eter , D., Zhang, X. & Alkhalifah,
T., 2021. Mapping full seismic waveforms to vertical velocity profiles by
deep learning, Geophysics, 86 (5), R711–R721. 
ingma , D.P. & Ba, J., 2014. Adam: A method for stochastic optimization,
preprint (arXiv:1412.6980). 
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L LSGAN ( G L H , L ) = E l � p( l ) [ ‖ 1 − D H ( G L H ( l)) ‖ 2 2 ] , (A10) 

L cycle ( G L H , G H L , L ) = E l � p( l ) [ ‖ G H L ( G L H ( l)) − l‖ 1 ] , (A11) 

L identity ( G L H , H ) = E h � p( h ) [ ‖ G L H ( h ) − h ‖ 1 ] , (A12) 

L ( G L H , L , H ) = λ1 L LSGAN ( G L H , L ) + λ2 L cycle ( G L H , G H L , L ) + λ3 L identity ( G L H , H ) , (A13) 

G 

∗
L H = arg min 

G L H 
L ( G L H , L , H ) . (A14) 

During training, the four neural networks G HL , D L , G LH and D H are optimized simultaneously. We follow Zhu et al. ( 2017 ) and use λ1 = 1, 
λ2 = 10 and λ3 = 5 in our experiments. 
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