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SUMMARY

We propose a surface-wave analysis method, extrapolated dis-
persion inversion (EDI), to image the near-surface shear-wave
velocity structures beyond the penetration depth of conven-
tional surface-wave inversion methods. Active-source surface
waves are the main type of seismic data for an imaging depth of
less than one kilometer. The relatively low-frequency data play
an important role in dispersion inversion, by increasing the
investigation depth and decreasing the inversion uncertainty.
However, recorded surface-wave data from an active source
generally lack low-frequency components below 3 Hz since
acquiring them with an active-source survey requires consid-
erable cost. Here, we propose to extrapolate the missing low-
frequency surface waves from band-limited data so that low-
frequency dispersion data can be measured. Due to the strong
nonlinearity of bandwidth extension, we rely on deep learning
to automately extrapolate the missing low-frequency surface
waves. Numerical examples with synthetic layered models
show that the extrapolated data provide additional dispersion
data at long wavelengths and thus can be used to image much
deeper structures compared with inversion using only band-
limited data.

INTRODUCTION

Rayleigh waves and Love waves propagate along the surface of
the Earth and dominate the seismic recordings with strong en-
ergy. Instead of being taken as noise, surface waves have been
used to image and characterize the near-surface shear-wave ve-
locity structures with their dispersion property by assuming a
horizontally layered (1D) medium (Dorman and Ewing, 1962;
Nazarian et al., 1983; Xia et al., 1999; Park et al., 1999). More
recently, Li et al. (2017, 2018); Liu et al. (2019); Zhang et al.
(2021b) develop wave-equation inversion of dispersion data so
that 2D or 3D velocity models with lateral heterogeneities are
expected to be retrieved from surface waves.

Surface waves have the following advantages to image the sub-
surface. First, shallow sharp velocity contrasts cannot be read-
ily captured with reflection-based methods or even acoustic
full-waveform inversion (FWI) (Masclet et al., 2019). More-
over, compared with FWI, surface-wave dispersion inversion is
less contaminated with the cycle-skipping problem and more
time-efficient. It has been used to build initial models for FWI
(Borisov et al., 2020).

Surface wave particle motion decreases with depth, which is
dependent on the frequency of the waves. Larger wavelengths
penetrate deeper for a given mode. Rix and Leipski (1995) ex-
amine the influence of the maximum wavelength contained in
the dispersion curve on the accuracy of S-wave velocity pro-
files and find that the curve with the maximum wavelength

yields the most accurate results at large depths; as the length
of the maximum wavelength increases, the accuracy of the in-
verted profile in the intermediate layers also increases. Vantas-
sel and Cox (2021) show that inversion uncertainty and non-
uniqueness effects are minimal for simple subsurface mod-
els with broad-band dispersion data but cannot be ignored for
more complex models characterized by band-limited disper-
sion data.

Low-frequency surface waves may be generated using very
massive sources albeit at a considerable increase in the im-
plementation cost (Foti et al., 2018). Regarding the impact of
low frequencies on the investigation depth, Park et al. (1999)
recommend always using a heavy impulsive source and low-
frequency receivers with no recording filters. Extra processing
is also required to enhance low-frequency signals. However,
owing to the limitations in the bandwidth of regular geophones
and sources, low frequencies below 3 Hz are generally miss-
ing from active-source surface-wave data. Conversely, pas-
sive sources in nature have sufficient energy down to very low
frequencies, which make them appealing for the investigation
of deep velocity structures (Park et al., 2005, 2007). For in-
stance, Le Meur et al. (2020) retrieve low-frequency surface
waves down to 0.5 Hz from interferometric virtual shot gath-
ers and demonstrate the benefits of such low frequencies in
velocity model building using a field dataset with a complex
near-surface composition. The virtual data, however, are com-
bined with higher frequencies from active data to ensure the
accuracy of imaging the very-shallow velocity layers.

Recently, machine learning has been applied to surface-wave
dispersion inversion in two aspects. Some researchers study
automatic dispersion curve picking with deep learning (Aly-
ousuf et al., 2018; Zhang et al., 2020; Ren et al., 2020; Kaul
et al., 2020; Dai et al., 2021; Dong et al., 2021; Song et al.,
2021; Ren et al., 2021) or other machine learning methods
(Masclet et al., 2019; Rovetta et al., 2021; Wang et al., 2021;
Yao et al., 2021). Others directly map surface-wave data to ve-
locity models by performing surface-wave inversion with deep
neural networks (Cheng et al., 2019; Hou et al., 2019; Hu et al.,
2020; Zwartjes, 2020; Liu et al., 2021; Yablokov et al., 2021;
Aleardi and Stucchi, 2021; Yang et al., 2021; Luo et al., 2022;
Cai et al., 2022). Here we propose another application of deep
learning for surface-wave inversion by extrapolating the low
frequencies of surface waves so that deeper velocity structures
can be imaged by surface-wave dispersion inversion.

Low-frequency extrapolation with deep learning was originally
proposed for solving the cycle-skipping problem of FWI (Sun
and Demanet, 2018, 2019, 2020b; Ovcharenko et al., 2019; Hu
et al., 2021; Fabien-Ouellet, 2020; Jin et al., 2022; Zhao et al.,
2020; Nakayama and Blacquière, 2021). A few field-data ex-
amples have verified the feasibility of data-driven bandwidth
extension methods (Aharchaou and Baumstein, 2020; Wang
et al., 2020; Fang et al., 2020; Zhang et al., 2021a). With su-
pervised learning, neural networks are trained using pairs of
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band-limited and low-frequency components of seismic data
in the training data sets and then used to extrapolate the miss-
ing low frequencies for target areas. Although most studies
work in the acoustic regime, Sun and Demanet (2020a) and
Ovcharenko et al. (2020) propose methods to extrapolate the
low frequencies of elastic data. Lin et al. (2021) and Robins
et al. (2021) apply low-frequency extrapolation to electromag-
netic scattered and medical ultrasound data, respectively. All
these contributions aim at relieving the dependence of inver-
sion on initial models, by leveraging the extrapolated low fre-
quencies.

In this work, the motivation of low-frequency extrapolation of
surface waves is to increase the investigation depth and to re-
serve the benefits of surface-wave inversion for near-surface
imaging and characterization using active-source data. We
therefore propose a surface-wave inversion method, extrap-
olated dispersion inversion (EDI), by including extrapolated
low-frequency surface waves in dispersion curve picking. The
extrapolated low frequencies give access to dispersion mea-
surement at larger wavelengths and thus are expected to detect
deeper structures. We use the deep-learning model proposed
in Sun and Demanet (2022) to extrapolate the low frequencies
from band-limited surface-wave data. Our numerical example
using a synthetic layered-model data set illustrates the poten-
tial and benefits of increasing image depth with EDI.

METHOD AND DATA

We start by illustrating the important role of low frequencies in
surface-wave inversion using a 1D layered model (Figure 1a).
Figure 1b shows the sensitivity kernels of the fundamental mode
calculated by taking the partial derivative of the dispersion ve-
locities with respect to S-wave velocity of the model. With de-
creasing frequency, surface waves become sensitive to deeper
velocity structures. The lower the frequency, the deeper the
structure sampled. In particular, the layers below 300 m can
only be detected using data below 2 Hz. However, acquir-
ing such low frequencies with an active source is impractical
or uneconomical. Instead, computationally extrapolating from
band-limited data is a much cheaper way to obtain a reasonable
approximation to low-frequency surface waves.

Low-frequency extrapolation with deep learning

A crucial step of EDI is low-frequency extrapolation of band-
limited surface waves. We use the deep-learning model (Fig-
ure 2) in Sun and Demanet (2022) to extrapolate low frequen-
cies from band-limited surface-wave data. We train the neural
network in a supervised fashion with pairs of low-frequency
and band-limited time series. The input of the neural network
is a group of three band-limited traces recorded by adjacent re-
ceivers. The output of the neural network is the low-frequency
counterpart of the middle trace of the input.

We demonstrate the workflow of EDI and the performance of
low-frequency extrapolation with deep learning using a syn-
thetic data set simulated on a collection of horizontally lay-
ered models. With a regular grid spacing of 2.5 m, each model
is 500 m in depth and 1000 m in width. The number of lay-

Figure 1: (a) 1D subsurface model described in terms of S-
wave velocity (Vs, [m/s]), P-wave velocity (Vp, [m/s]), and
density (ρ , [kg/m3]). (b) Sensitivity kernels with respect to
Vs of the fundamental mode. The penetration depth increases
with the decrease of frequency. In particular, the layers below
300 m can only be detected using data below 2 Hz.

Figure 2: Deep learning architecture for low-frequency extrap-
olation. The model uses a kernel length of 2 on all 1D convo-
lutional layers and employs exponential dilation rates to effi-
ciently increase the receptive field of the convolutional neural
network. Details can be found in Sun and Demanet (2022).

Figure 3: Extrapolation results of test model in Figure 1: Com-
parison of surface waves in vertical components in (a) 4− 15
Hz band-limited, (b) extrapolated low-frequency, and (c) true
low-frequency shot gather below 4 Hz.
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ers on each model is random and follows an uniform distribu-
tion n v U(3,14). The thickness (th) and S-wave velocity of
each layer are randomly sampled from th vU(20,50) m, and
Vs v U(500,1000) m/s, respectively. In addition, we ensure
that velocities generally increase with depth by adding a ve-
locity of [500(i−1)]/(n−1) m/s to the random velocity of the
i-th layer. The deepest layer is considered the half-space, and
its thickness is extended to the end of the model. Poisson’s
ratio is fixed for these models, and we use 1.732 as the ratio of
Vp/Vs. The density is also fixed with 1800 kg/m3. With this
model building method, we generate 500 models in total and
use 400 models as training models, 30 models as validation
models and the rest as test models.

The surface waves are simulated using the open-source finite-
difference code SOFI2D (Bohlen, 2002; Bohlen and Saenger,
2006) with a free-surface boundary condition on the top of
each model. The source wavelet is a Ricker wavelet with a
dominant frequency of 10 Hz. We simulate only one shot on
each layered model. The shot gather contains Rayleigh waves
recorded by 401 vertical-component geophones with an inter-
val of 2.5 m. The sampling rate and recording length are 0.002
s and 2 s, respectively. The maximum offset is 1000 m. The
raw shot gather is preprocessed trace-by-trace by first normal-
izing to one by its maximum and then multiplying by a con-
stant of 100. After prepossessing, each full-band trace is split
into low-frequency time series below 4 Hz and band-limited
counterparts above 4 Hz. With every three band-limited traces
as one sample, the 401 traces of one shot are split into 399
samples for training. In total, the training data set contains
399× 70 = 27,930 samples. Both low-frequency and band-
limited time series are downsampled with a factor of 2 be-
fore being fed into the neural network. Thus the dimension is
500×3 for the input and 500×1 for the output. After training,
we trace-by-trace predict the low frequencies for a test model
and then combine all traces based on their offsets to generate
one low-frequency shot gather.

Extrapolated dispersion inversion

Following bandwidth extension, we can construct a pseudo
full-band shot gather containing surface waves by combining
extrapolated low frequencies with band-limited data. Then we
calculate the Rayleigh waves phase velocity dispersion image
using the Phase-Shift method (Park et al., 1998). With the ex-
trapolated low-frequency data, we can pick additional disper-
sion curve of the fundamental mode at long wavelengths from
the pseudo full-band dispersion image. Combining the disper-
sion curve of an extended frequency range with the existing
band from active surface waves attempts to increase the maxi-
mum depth of Vs estimation.

Profiles of Earth’s parameters can be derived from dispersion
data with various inversion methods. Here the inversion en-
gine is a perturbational method based on finite elements and
is implemented using the RAYLEE package (Haney and Tsai,
2017). The initial model for the iterative inversion is calculated
by a Dix-type nonperturbational inversion method (Haney and
Tsai, 2015). We parametrize the subsurface model with only
the S-wave velocity and thickness of each layer. The P-wave
velocity and density inside each layer are derived from Vs for

the forward problem. This simplified parametrization does not
impact the solution in a significant way as Rayleigh waves are
mostly sensitive to Vs (Xia et al., 1999).

RESULTS

We extrapolate low-frequency surface waves from band-limited
shot records on test models using the neural network trained
with 10 epochs. Figure 3 compares the 4−15 Hz band-limited
data, extrapolated and true low-frequency data below 4 Hz
on the test model in Figure 1. Traces with a regular spac-
ing of 62.5 m are plotted among the 399 traces of one shot
gather. Overall the extrapolated data match the true low fre-
quencies except events with later arrival time and far offsets.
After reconstructing pseudo full-band shot gathers, we com-
pare the amplitude spectra of the entire shot gather with extrap-
olated and true low frequencies (Figure 4). The low-frequency
components below 4 Hz are recovered although they are com-
pletely missing before extrapolation. The difference between
two amplitude spectra shows that the extrapolation accuracy
decreases with decreasing frequencies and increasing offsets.
At a relatively far offset of 800 m, errors of the amplitude spec-
tra are around 10 dB.
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Figure 4: Extrapolation results of test model in Figure 1: Com-
parison of amplitude spectrum between data with (a) extrapo-
lated and (b) true low frequencies below 4 Hz. (c) The differ-
ence between data with extrapolated and true low frequencies.

We then calculate the dispersion data using all traces of one
shot gather. The dispersion image with 0.5− 4 Hz extrapo-
lated data generally match that with 0.5−4 Hz true data (Fig-
ure 5), which implies that the trained neural network captures
the dispersion property of surface waves in addition to extrapo-
lating low frequencies. However, the small-scale discontinuity
around 4 Hz suggests that the accuracy of the extrapolated data
is not perfect. Further research improving the performance
would be to modify the neural network and training strategies
according to the physical property of surface waves.

Dispersion curves are picked from the dispersion images as
the input measurements for surface-wave inversion (Figure 5).
Figure 6 compares the resulting dispersion curves (inverted us-
ing 4 − 14 Hz band-limited and 0.5 − 14 Hz full-band data
with true or extrapolated 0.5 − 4 Hz low frequencies) with
the measurements. All the inverted dispersion curves meet
the picked ones in their frequency ranges. The EDI result-
ing Vs profile roughly aligns with the profile inverted using
0.5− 14 Hz full-band data (Figure 7). However, the inverted
profile using 4− 14 Hz band-limited data loses constraints in
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the deep region below 150 m, which is conforming to the sen-
sitivity kernel (Figure 1). In contrast, despite discrepancies in
the middle layers, EDI with 0.5− 4 Hz extrapolated data can
detect the deepest layers accurately. The difference highlights
the impact of low-frequency information on dispersion inver-
sion. Moreover, since we did not invert sharp profiles using
dispersion data, we evaluate the inversion results by compar-
ing the inverted profiles with the true model after smoothing.
The inverted profiles with either true or extrapolated low fre-
quencies is comparable with the true profile after smoothing
except the minor errors (less than 50 m/s) in the intermediate
depth. This simple example indicates that EDI is potentially
an attractive solution to the problem of insufficient detection
depth of surface-wave inversion with active-source data.

(a) (b)

Figure 5: Dispersion images of data with 0.5− 4 Hz (a) ex-
trapolated and (b) true low frequencies. Black lines denote
dispersion curves of fundamental mode picked from panels.
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Figure 6: Inversion results for the test model in Figure 1: Com-
parison of the inverted and measured dispersion curves.

DISCUSSION

There are several limitations with the method. First, EDI re-
quires reliable low-frequency extrapolation of surface waves,
which depends on successful training and generalization of the
deep neural networks. Although the neural network did not
see the test model during training, the training and test mod-
els are from the same data distribution in our example. Future
work on out-of-sample testing is important to study the gen-
eralization for surface-wave extrapolation. Second, we spec-
ulate that only a few frequencies around the lower band of
band-limited data could be reliably extrapolated, owing to the
intrinsic nature of surface-wave dispersion. Even so, we can
expect an increase of several times of the investigation depth
if the minimum frequency of the band-limited data is low as
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Figure 7: Inversion results for the test model in Figure 1: Com-
parison of inverted Vs profiles with the true model. The EDI
result (red line) roughly aligns with the result using 0.5− 14
Hz full-band data (solid black line), and can detect the deep
layer below 300 m more accurate than that using 4− 14 Hz
band-limited data (blue line).

the penetration depth is inversely proportional to the mini-
mum frequency. Thrid, EDI may be inappropriate for dealing
with higher modes since overtones generally appear at rela-
tively high-frequency ranges for field data. In our example, we
only pick the fundamental mode using the extrapolated low
frequencies. In addition, the problem of non-unique solutions
may arise when several sets of parameters yield the same dis-
persion curve. However, EDI could in principle reduce the
inversion uncertainties thanks to extra constraints in the ex-
trapolated frequency range.

CONCLUSION

By extrapolating low-frequency components from band-limited
surface waves, EDI incorporates additional dispersion data at
long wavelengths for increasing the detection depth of surface-
wave analysis. When extrapolating with sufficient accuracy,
EDI enables us to achieve deeper near-surface characterization
than surface-wave inversion with band-limited data. The syn-
thetic example using layered models is encouraging and shows
its potential to deal with field surface-wave data. Although we
focus on Rayleigh waves in this work, the proposed method is
also applicable to other kinds of surface waves, such as Love
and Scholte waves, which however require specific forward
modeling algorithms and data acquisition procedures.

ACKNOWLEDGMENTS

The authors acknowledge MIT MathWorks Science Fellow-
ship and MIT Earth Resources Laboratory for funding. The au-
thors thank Niels Grobbe, Robert D. van der Hilst, and Liguo
Han for helpful discussion.



Extrapolated surface-wave dispersion inversion

REFERENCES

Aharchaou, M., and A. Baumstein, 2020, Deep learning-based artificial bandwidth extension: Training on ultrasparse OBN to
enhance towed-streamer FWI: The Leading Edge, 39, 718–726.

Aleardi, M., and E. Stucchi, 2021, A hybrid residual neural network - Monte Carlo approach to invert surface wave dispersion data:
Near Surface Geophysics, 19, 397–414.

Alyousuf, T., D. Colombo, D. Rovetta, and E. Sandoval-Curiel, 2018, Near-surface velocity analysis for single-sensor data: An
integrated workflow using surface waves, AI, and structure-regularized inversion, in SEG Technical Program Expanded Abstracts
2018: Society of Exploration Geophysicists, 2342–2346.

Bohlen, T., 2002, Parallel 3-D viscoelastic finite difference seismic modelling: Computers & Geosciences, 28, 887–899.
Bohlen, T., and E. H. Saenger, 2006, Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves:

Geophysics, 71, T109–T115.
Borisov, D., F. Gao, P. Williamson, and J. Tromp, 2020, Application of 2D full-waveform inversion on exploration land data:

Geophysics, 85, R75–R86.
Cai, A., H. Qiu, and F. Niu, 2022, Semi-supervised surface wave tomography with Wasserstein cycle-consistent GAN: Method and

application to Southern California plate boundary region: Journal of Geophysical Research: Solid Earth, e2021JB023598.
Cheng, X., Q. Liu, P. Li, and Y. Liu, 2019, Inverting Rayleigh surface wave velocities for crustal thickness in eastern Tibet and the

western Yangtze craton based on deep learning neural networks: Nonlinear Processes in Geophysics, 26, 61–71.
Dai, T., J. Xia, L. Ning, C. Xi, Y. Liu, and H. Xing, 2021, Deep learning for extracting dispersion curves: Surveys in Geophysics,

42, 69–95.
Dong, S., Z. Li, X. Chen, and L. Fu, 2021, DisperNet: An effective method of extracting and classifying the dispersion curves in

the frequency-Bessel dispersion spectrum: Bulletin of the Seismological Society of America, 111, 3420–3431.
Dorman, J., and M. Ewing, 1962, Numerical inversion of seismic surface wave dispersion data and crust-mantle structure in the

New York-Pennsylvania area: Journal of Geophysical Research, 67, 5227–5241.
Fabien-Ouellet, G., 2020, Low-frequency generation and denoising with recursive convolutional neural networks, in SEG Technical

Program Expanded Abstracts 2020: Society of Exploration Geophysicists, 870–874.
Fang, J., H. Zhou, Y. Elita Li, Q. Zhang, L. Wang, P. Sun, and J. Zhang, 2020, Data-driven low-frequency signal recovery using

deep-learning predictions in full-waveform inversion: Geophysics, 85, A37–A43.
Foti, S., F. Hollender, F. Garofalo, D. Albarello, M. Asten, P.-Y. Bard, C. Comina, C. Cornou, B. Cox, G. Di Giulio, et al., 2018,

Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project: Bulletin of Earthquake
Engineering, 16, 2367–2420.

Haney, M. M., and V. C. Tsai, 2015, Nonperturbational surface-wave inversion: A dix-type relation for surface waves: Geophysics,
80, EN167–EN177.

——–, 2017, Perturbational and nonperturbational inversion of Rayleigh-wave velocities: Geophysics, 82, F15–F28.
Hou, S., S. Angio, A. Clowes, I. Mikhalev, H. Hoeber, and S. Hagedorn, 2019, Learn to invert: Surface wave inversion with deep

neural network: 81st EAGE Conference and Exhibition 2019 Workshop Programme, European Association of Geoscientists &
Engineers, 1–5.

Hu, J., H. Qiu, H. Zhang, and Y. Ben-Zion, 2020, Using deep learning to derive shear-wave velocity models from surface-wave
dispersion data: Seismological Research Letters, 91, 1738–1751.

Hu, W., Y. Jin, X. Wu, and J. Chen, 2021, Progressive transfer learning for low-frequency data prediction in full waveform inversion:
Geophysics, 86, 1–82.

Jin, Y., W. Hu, S. Wang, Y. Zi, X. Wu, and J. Chen, 2022, Efficient progressive transfer learning for full-waveform inversion with
extrapolated low-frequency reflection seismic data: IEEE Transactions on Geoscience and Remote Sensing, 60, 1–10.

Kaul, A., A. Abubakar, A. Misbah, and P. J. Bilsby, 2020, Detecting the fundamental mode of energy for surface wave analysis,
modelling, and inversion, using a deep convolutional network, in SEG Technical Program Expanded Abstracts 2020: Society of
Exploration Geophysicists, 1571–1575.

Le Meur, D., D. Donno, J. Courbin, D. Solyga, and A. Prescott, 2020, Retrieving ultra-low frequency surface waves from land
blended continuous recording data, in SEG Technical Program Expanded Abstracts 2020: Society of Exploration Geophysicists,
1855–1859.

Li, J., Z. Feng, and G. Schuster, 2017, Wave-equation dispersion inversion: Geophysical Journal International, 208, 1567–1578.
Li, J., S. Hanafy, and G. Schuster, 2018, Wave-equation dispersion inversion of guided P waves in a waveguide of arbitrary geome-

try: Journal of Geophysical Research: Solid Earth, 123, 7760–7774.
Lin, Z., R. Guo, M. Li, A. Abubakar, T. Zhao, F. Yang, and S. Xu, 2021, Low-frequency data prediction with iterative learning for

highly nonlinear inverse scattering problems: IEEE Transactions on Microwave Theory and Techniques, 69, 4366–4376.
Liu, L., Y. Liu, T. Li, Y. He, Y. Du, and Y. Luo, 2021, Inversion of vehicle-induced signals based on seismic interferometry and

recurrent neural networks: Geophysics, 86, Q37–Q45.
Liu, Z., J. Li, S. M. Hanafy, and G. Schuster, 2019, 3D wave-equation dispersion inversion of Rayleigh waves: Geophysics, 84,

R673–R691.
Luo, Y., Y. Huang, Y. Yang, K. Zhao, X. Yang, and H. Xu, 2022, Constructing shear velocity models from surface wave dispersion



Extrapolated surface-wave dispersion inversion

curves using deep learning: Journal of Applied Geophysics, 196, 104524.
Masclet, S., T. Bardainne, V. Massart, and H. Prigent, 2019, Near surface characterization in Southern Oman: Multi-wave inversion

guided by machine learning: 81st EAGE Conference and Exhibition 2019, European Association of Geoscientists & Engineers,
1–5.

Nakayama, S., and G. Blacquière, 2021, Machine-learning-based data recovery and its contribution to seismic acquisition: Simul-
taneous application of deblending, trace reconstruction, and low-frequency extrapolation: Geophysics, 86, P13–P24.

Nazarian, S., K. H. Stokoe II, and W. R. Hudson, 1983, Use of spectral analysis of surface waves method for determination of
moduli and thicknesses of pavement systems: Transportation Research Board, 38–45.

Ovcharenko, O., V. Kazei, M. Kalita, D. Peter, and T. Alkhalifah, 2019, Deep learning for low-frequency extrapolation from
multioffset seismic data: Geophysics, 84, R989–R1001.

Ovcharenko, O., V. Kazei, P. Plotnitskiy, D. Peter, I. Silvestrov, A. Bakulin, and T. Alkhalifah, 2020, Extrapolating low-frequency
prestack land data with deep learning, in SEG Technical Program Expanded Abstracts 2020: Society of Exploration Geophysi-
cists, 1546–1550.

Park, C., R. Miller, N. Rydén, J. Xia, and J. Ivanov, 2005, Combined use of active and passive surface waves: Environmental and
Engineering Geophysics, 10, 323–334.

Park, C. B., R. D. Miller, and J. Xia, 1998, Imaging dispersion curves of surface waves on multi-channel record, in SEG Technical
Program Expanded Abstracts 1998: Society of Exploration Geophysicists, 1377–1380.

——–, 1999, Multichannel analysis of surface waves: Geophysics, 64, 800–808.
Park, C. B., R. D. Miller, J. Xia, and J. Ivanov, 2007, Multichannel analysis of surface waves (MASW) active and passive methods:

The Leading Edge, 26, 60–64.
Ren, L., F. Gao, P. Williamson, and G. A. McMechan, 2021, On application issues of automatic dispersion curves picking by

machine learning: First International Meeting for Applied Geoscience & Energy, Society of Exploration Geophysicists, 1836–
1840.

Ren, L., F. Gao, Y. Wu, P. Williamson, W. Wang, and G. A. McMechan, 2020, Automatic picking of multi-mode dispersion curves
using CNN-based machine learning, in SEG Technical Program Expanded Abstracts 2020: Society of Exploration Geophysi-
cists, 1551–1555.

Rix, G. J., and E. A. Leipski, 1995, Accuracy and resolution of surface wave inversion: Recent Advances in Instrumentation, Data
Acquisition and Testing in Soil Dynamics, ASCE, 17–32.

Robins, T., J. Camacho, O. C. Agudo, J. L. Herraiz, and L. Guasch, 2021, Deep-learning-driven full-waveform inversion for
ultrasound breast imaging: Sensors, 21, 4570.

Rovetta, D., A. Kontakis, and D. Colombo, 2021, Application of a density-based spatial clustering algorithm for fully automatic
picking of surface-wave dispersion curves: The Leading Edge, 40, 678–685.

Song, W., X. Feng, G. Wu, G. Zhang, Y. Liu, and X. Chen, 2021, Convolutional neural network, Res-Unet++, -based dispersion
curve picking from noise cross-correlations: Journal of Geophysical Research: Solid Earth, 126, e2021JB022027.

Sun, H., and L. Demanet, 2018, Low frequency extrapolation with deep learning, in SEG Technical Program Expanded Abstracts
2018: Society of Exploration Geophysicists, 2011–2015.

——–, 2019, Extrapolated full waveform inversion with convolutional neural networks, in SEG Technical Program Expanded
Abstracts 2019: Society of Exploration Geophysicists, 4962–4966.

——–, 2020a, Elastic full-waveform inversion with extrapolated low-frequency data, in SEG Technical Program Expanded Ab-
stracts 2020: Society of Exploration Geophysicists, 855–859.

——–, 2020b, Extrapolated full-waveform inversion with deep learning: Geophysics, 85, R275–R288.
——–, 2022, Deep learning for low-frequency extrapolation of multicomponent data in elastic FWI: IEEE Transactions on Geo-

science and Remote Sensing, 60, 1–11.
Vantassel, J. P., and B. R. Cox, 2021, SWinvert: A workflow for performing rigorous 1-D surface wave inversions: Geophysical

Journal International, 224, 1141–1156.
Wang, M., S. Xu, and H. Zhou, 2020, Self-supervised learning for low frequency extension of seismic data, in SEG Technical

Program Expanded Abstracts 2020: Society of Exploration Geophysicists, 1501–1505.
Wang, Z., C. Sun, and D. Wu, 2021, Automatic picking of multi-mode surface-wave dispersion curves based on machine learning

clustering methods: Computers & Geosciences, 153, 104809.
Xia, J., R. D. Miller, and C. B. Park, 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves: Geo-

physics, 64, 691–700.
Yablokov, A. V., A. S. Serdyukov, G. N. Loginov, and V. D. Baranov, 2021, An artificial neural network approach for the inversion

of surface wave dispersion curves: Geophysical Prospecting, 69, 1405–1432.
Yang, J., C. Xu, and Y. Zhang, 2021, A new mathematical model for dispersion of Rayleigh wave and a machine learning based

inversion solver: arXiv preprint arXiv:2106.14025.
Yao, H., W. Cao, X. Huang, and B. Wu, 2021, Automatic extraction of surface wave dispersion curves using unsupervised learning:

First International Meeting for Applied Geoscience & Energy, Society of Exploration Geophysicists, 1826–1830.
Zhang, H., P. Yang, Y. Liu, Y. Luo, and J. Xu, 2021a, Deep learning-based low-frequency extrapolation and impedance inversion

of seismic data: IEEE Geoscience and Remote Sensing Letters (early access, doi: 10.1109/LGRS.2021.3123955).



Extrapolated surface-wave dispersion inversion

Zhang, X., Z. Jia, Z. E. Ross, and R. W. Clayton, 2020, Extracting dispersion curves from ambient noise correlations using deep
learning: IEEE Transactions on Geoscience and Remote Sensing, 58, 8932–8939.

Zhang, Z.-d., E. Saygin, L. He, and T. Alkhalifah, 2021b, Rayleigh wave dispersion spectrum inversion across scales: Surveys in
Geophysics, 42, 1281–1303.

Zhao, T., A. Abubakar, X. Cheng, and L. Fu, 2020, Augment time-domain FWI with iterative deep learning, in SEG Technical
Program Expanded Abstracts 2020: Society of Exploration Geophysicists, 850–854.

Zwartjes, P., 2020, Near surface velocity estimation from phase velocity-frequency panels with deep learning: EAGE 2020 Annual
Conference & Exhibition Online, European Association of Geoscientists & Engineers, 1–5.


