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Abstract—Full waveform inversion (FWI) strongly depends on
an accurate starting model to succeed. This is particularly true in
the elastic regime: The cycle-skipping phenomenon is more severe
in elastic FWI compared to acoustic FWI, due to the short S-wave
wavelength. In this paper, we extend our work on extrapolated
FWI (EFWI) by proposing to synthesize the low frequencies of
multi-component elastic seismic records, and use those ‘“artificial”
low frequencies to seed the frequency sweep of elastic FWIL. Our
solution involves deep learning: we can either train the same
convolutional neural network (CNN) on two training datasets, one
with vertical components and one with horizontal components
of particle velocities, or train with two components together, to
extrapolate the low frequencies of elastic data for 2D elastic
FWI. The architecture of this CNN is designed with a large
receptive field by dilated convolution. Numerical examples on
the Marmousi2 model show that the 2-4 Hz low frequency data
extrapolated from band-limited data above 4 Hz provide good
starting models for elastic FWI of P-wave and S-wave velocities.
Additionally, we study the generalization ability of the proposed
neural network from acoustic to elastic data. For elastic test data,
collecting the training dataset by elastic simulation shows better
extrapolation accuracy than acoustic simulation, i.e., a smaller
generalization gap.

Index Terms—Neural networks, Waveform inversion, Com-
putational seismology, Controlled source seismology, Numerical
solutions.

I. INTRODUCTION

ULL waveform inversion is well-known for its great
potential to provide quantitative Earth properties of com-
plex subsurface structures. Acoustic FWI is widely used and
has been successfully applied to real seismic data. However,
most seismic data have strong elastic effects [1]. The acoustic
approximation is insufficient to estimate correct reflections
and introduces additional artifacts to FWI results [2], [3].
Therefore, it is desirable to develop a robust elastic FWI
method for high-resolution Earth model building.
Foundational work has shown the ability of elastic FWI to
retrieve realistic properties of the subsurface [4], [5]. However,
it has difficulty handling real data sets. Elastic FWI is very
sensitive to: accuracy of the starting model; correct estimation
of density; proper definition of multi-parameter classes; and
noise level [6]. The complex wave phenomena in elastic
wavefields bring new challenges to FWI.
Among the many factors that affect the success of elas-
tic FWI, the lowest starting frequency is an essential one,
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given that an accurate starting model is generally unavailable.
Compared to acoustic FWI, the nonlinearity of elastic FWI is
more severe due to the short S-wave propagating wavelength.
Therefore, elastic FWI always requires a lower starting fre-
quency compared to acoustic FWI. Additionally, the parameter
cross-talk problem exists in elastic FWI and becomes more
pronounced at higher frequencies, so ultra-low frequencies are
required for a successful inversion of S-wave velocity and
density.

In synthetic studies of elastic FWI, [7] invert the overthrust
model [8] from 1.7 Hz. [6] invert the Valhall model [9] from 2
Hz. Both inversion workflows start from Gaussian smoothing
of true models. Moreover, [10] invert the Marmousi2 model
[11] using a velocity-gradient starting model but a very low
frequency (0.16 Hz). For a successful inversion of the Mar-
mousi2 density model, [12] use 0-2 Hz in the first stage of
multi-scale FWI. [13] invert the same model from 0.2 Hz.

Few applications of elastic FWI to real data sets are reported
in the literature [1], [14], [15]. [16] use 3.5 Hz as the starting
frequency of elastic FWI given that the initial models are
accurate enough. [17] apply 3D elastic FWI to update P-
wave velocity and obtain S-wave velocity and density using
empirical relationships. [18] perform elastic FWI involving
surface waves in the band of 5-15 Hz for a land data set.

New developments in acquisition enhance the recent success
of FWI by measuring data with lower frequencies and longer
offsets [19], [20]. However, only acoustic FWI was applied
to the land data set with low frequencies down to 1.5 Hz
[21]. In addition to the expensive acquisition cost for the
low-frequency signals, direct use of the field low-frequency
data requires dedicated pre-processing steps, including travel-
time tomography, for an accurate enough model to initialize
FWI. The final inversion results strongly rely on the starting
tomography model. Hence, attempting to retrieve reliable
low-frequency data offers a sensible pathway to relieve the
dependency of elastic FWI on starting models.

Deep learning is an emerging technology in many aspects
of exploration geophysics. In seismic inversion, several groups
have experimented with directly mapping data to model using
deep learning [22]-[26]. Within Bayesian seismic inversion
framework, deep learning has been applied for formulating
priors [27]-[29]. Other groups use deep learning as a signal
processing step to acquire reasonable data for inversion. For
instance, [30] use deep learning to remove elastic artifacts
for acoustic FWI. [31] remove the numerical dispersion of
wavefields by transfer learning.

Computationally extrapolating the missing low frequencies
from band-limited data is the cheapest way for FWI to mitigate
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the cycle-skipping problem. [32], [33] seperate the shot gather
to atomic events and then change the wavelet to extrapolate the
low frequencies. [34] extend the frequency spectrum based on
the redundancy of extended forward modeling. [35]-[37] have
utilized CNN to extrapolate the missing low frequencies from
band-limited data. They have proposed different architectures
of CNN to learn the mapping between high and low frequency
data from different features in the training datasets. However,
only acoustic data are considered in these studies. Recently,
[38] extrapolated the low frequencies for prestack land data.
Meanwhile, our preliminary work [39] shows the feasibility to
extrapolate reliable low frequencies for elastic FWI using the
deep learning model in [40].

Although the mechanism of deep learning is hard to ex-
plain, the feasibility of low frequency extrapolation has been
discussed in terms of sparsity inversion [41] and wavenum-
ber illumination [42]. With multiple-trace extrapolation, the
low wavenumbers of far-offset data have been proposed as
the features in the frequency domain detected by CNN to
extrapolate the missing low frequencies [42]. In contrast, for
trace-by-trace extrapolation [40], the features to learn are the
structured time series themselves. The feasibility of trace-by-
trace frequency extrapolation has been mathematically proved
in simple settings in [43], [44], as a by-product of super-
resolution.

In this paper, we extend our workflow of extrapolated FWI
with deep learning [40] into the elastic regime. We train the
neural network with elastic training datasets to predict the
low-frequency data of the horizontal components (v,) and the
vertical components (v, ). The extrapolated low frequency data
are used to initialize elastic FWI from a crude starting model.
For the architecture design of CNN, a large receptive field
is efficiently achieved by dilation convolution. Moreover, to
investigate the generalization ability of neural networks from
acoustic to elastic data, we compare the extrapolation results
of the neural networks trained on elastic data and acoustic data
to predict the elastic low-frequency data. The elastic test data
are simulated on the modified Marmousi2 model (referred to
as Marmousi2) in a deep-water marine environment, so surface
waves are ignored in this work.

II. METHOD

We first give a brief review of elastic FWI as implemented in
this paper. Then we illustrate the feasibility of low frequency
extrapolation, and design two deep learning models for this
purpose. Afterwards, the training and test datasets are provided
to train and verify the performance of the proposed neural
networks.

A. Review of elastic FWI

Elastic FWI is implemented in the time domain to invert
the P-wave velocities (v,), S-wave velocities (v,) and density
(p) simultaneously. The object function E is formulated as

1.7 1 2
E = i(Sd 6d = 222/[ucal - uobs] dta (1)

where d are the residuals between observed wavefields u,pg
and calculated wavefields u.,;. In 2D, both u,s and u.q;

contain the v, and v, components of elastic wavefields. The
gradient g—ﬁ relative to the model parameters m is calculated
in terms of v,, v, and p using the velocity-stress formulation
of the elastic wave equation [12]. The starting models mg are
updated using the L-BFGS method [45].

B. Deep learning models for low-frequency extrapolation

We choose CNN to perform the task of low-frequency
extrapolation. The output of the neural network is a one-
dimensional time series in the low frequency band. The input
of the neural network involves bandlimited traces recorded by
several adjacent receivers where the middle trace corresponds
to the high frequency part of the output. Low-frequency
extrapolation with the multi-trace setup is expected to benefit
from the coherence among different traces [40]. However, the
moderate improvement of the performance with multiple traces
also increases the training effort, so we choose to use three
traces as the input in our experiments. In 2D, the elastic data
contain horizontal and vertical components. As a result, we can
choose to separately train two neural networks with the same
architecture on two different training datasets: one contains
v, and the other contains v,. Alternatively, we can feed into
one neural network with both components and train the neural
network to simultaneously process two components.

We emprically find that the proposed CNN model requires
a large receptive field for low-frequency extrapolation. A
very large receptive field enables each feature in the final
output to include a large range of input pixels. Since any
single frequency component is related to the entire waveform
in the time domain, extrapolation from one frequency band
to the other requires a large receptive field to cover the
entire input signal. Typically, the receptive field is increased
by stacking layers. For example, stacking two convolutional
layers (without pooling) with 3 x 3 filter results in a layer
of 5 x 5 filter. However, it requires many layers to result in a
large enough receptive field and is computationally inefficient.
In our previous work, a large receptive field is achieved
by directly using a large filter on each convolutional layer.
Instead, here we propose to use a small filter with dilated
convolution.

The designed CNN architecture uses dilated convolution to
increase the receptive field by orders of magnitude. A dilated
convolution [46] (convolution with holes) is a convolution
where the filter is applied over an area larger than its length
by skipping input values with a certain step (dilation). It
effectively allows the network to operate on a coarser scale
than with a normal convolution. This is similar to pooling or
stride, but here the output has the same size as the input. As
a special case, dilated convolution with dilation of one yields
the standard convolution. Stacked dilated convolutions enable
networks to have very large receptive fields with just a few
layers. In addition to save computational cost, this method
helps to preserve the input resolution throughout the network
[46]. Moreover, we use causal convolution to process time
series [47], although this choice does not appear to be essential
in our case.

The architecture has two dilated convolutional blocks
(Fig. 1). Each block consists of nine 1D convolutional layers.
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Fig. 1. The deep learning model designed with dilated convolution for low-

frequency extrapolation. Three traces are input together to extrapolate the low
frequencies of the middle trace. (a) The CNN model. The filter length is 2 on
each convolutional layer but two dilated convolutional blocks are stacked to
increase the receptive field exponentially with depth. (b) The dilated causal
convolutional block. Each block has 9 convolutional layers. The filter size,
number of channel and dilation of each convolutional layer are labeled on
the top. The number of convolutional layers and dilation may be increased
according to the size of the input time series. Here the receptive field of
the architecture is 1024, which can cover the entire input of 1000 after
downsampling the signal with a factor of 3.

Each convolutional layer is followed by a PReLU layer and
a batch normalization layer. On each convolutional layer,
there are 64 causal convolutional filters with a length of two
(Fig. 1b). The dilations of the nine convolutional layers are
20,21 .., 28 respectively. The exponential increase in dilation
results in exponential growth, with depth, of the receptive field
[48].

Without pooling layer, the size of the receptive field RF;
on the [ + 1 layer is

RFi41 =RF;+ (kiy1— 1) X 8141 X dj41, 1=0,..,n
(2)
RFy =1, €)

where k11 is the kernel size of the [ + 1 convolutional layer.

TABLE I
COMPARISON BETWEEN TWO DEEP LEARNING ACHITECTURES FOR
LOW-FREQUENCY EXTRAPOLATION

deep learning architecture H receptive field | trainable parameters

ARCHI (this work) 1,024 17,314,200
ARCH?2 ( [40])* 496 35,119,048
@ We use a kernel Tength of 100 for all the filters in this model.

S14+1 is the stride size. d;41 is the dilation on the [ + 1 layer
if the layer contains a dilated convolution. Otherwise, d;
equals one for regular convolutional layers.

Table I compares the receptive field and trainable param-
eters of the deep learning model used in this work (called
ARCHI1) and that in [40] (ARCH2, with a kernel length of
100) for low-frequency extrapolation. Although both neural
networks are able to perform low frequency extrapolation,
the new achitecture has a much larger receptive field with
fewer trainable parameters, thanks to a smaller kernel size.
Thus, convolution with dilation is more efficient than directly
using a large convolutional kernel in terms of low frequency
extrapolation.

C. Training and test datasets

The training and test datasets are simulated on the elastic
training and test models. The Marmousi2 elastic model (Fig. 2)
is referred to as the test model in deep learning. This is also the
true model in the subsequent elastic FWI. We randomly extract
seven batches from the 3D Overthrust benchmark model [49]
and use six batches as the training models and one as the
validation model. The size of each model is 500 x 200 with
a grid spacing of 20 m, including a water layer on the top
of each model with a depth of 420 m. Fig. 3 shows the P-
wave velocities of these models. In the elastic regime, each
model consists of three parameters: v, v, and p. The S-wave
velocities and densities of the models are calculated based
on P-wave velocities using empirical relations between elastic
wavespeeds and densities in the Earth’s crust [50], [51]. The
very different structures between the training and test models
enable us to check the generalization ability for the neural
network to extrapolate low frequencies on the Marmousi2
model.

Both training and test datasets are simulated using a 2D
time domain stress-velocity PSV finite-difference (FD) code
[52], [53] with an eighth-order spatial FD operator. A Ricker
wavelet with a dominant frequency of 10 Hz is used as the
source signal. The sampling rate and the recording time is
0.002 s and 6 s, respectively. To collect the test dataset, 50
shots are excited evenly from 800 m to 8640 m in the water
layer at the same depth of 40 m. 400 receivers are placed
from 800 m to 8780 m under the water layer with a depth
of 460 m to record v, and v, of the elastic wavefields. It is
not necessary to collect the training and test datasets using
the same acquisition geometry. For the training model, there
are 100 shots evenly spaced from 500 m to 8420 m with
a depth of 40 m on each training model. 400 receivers are
placed from 480 m to 8460 m. Additionally, a free surface
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Fig. 2. The Marmousi2 model: (a)vy, (b)vs and (c)p. The Marmousi2 model
is the true model for elastic FWI and the test model for synthesizing the test
dataset for deep learning.
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Fig. 3. The P-wave velocities of the 2D training and validation models
extracted from 3D Overthrust benchmark model. (a) The six training models.
(b) The validation model. The size of each model is equally 500 x 200 with
a grid spacing of 20 m including a 420 m depth water layer. Each model
contains three parameters: vy, vs and p.

boundary condition is applied to the top of the model to
simulate the realistic marine exploration environment. The
free surface condition damages the low frequency data and
thus the energy in the low frequency band is very low in the
simulated full-band data. This brings a new challenge to the
low frequency extrapolation.

After the forward modeling, two training datasets are col-
lected, one with a dataset of horizontal components and one
with a dataset of vertical components. The 2D elastic data
on the test model is also separated into two test datasets
to process each component individually. With a three-to-one
extrapolation setup, there are 6 x 100 x 398 = 238, 800 training
samples in each training dataset and 1 x 50 x 398 = 19, 900
test samples in each test dataset.

A simple preprocessing step can be used to improve the
deep learning performance. Each sample in the training and
test datasets is normalized by dividing the raw signal by its
maximum. Then all the data are scaled with a constant (for
instance, 100) to stabilize the training process. The values used
to normalize and scale the raw data are recorded to recover the
original observed data for elastic FWI. After this process, each
sample in the training and test dataset is separated into a low-
frequency signal and a high-frequency signal using a smooth
window in the frequency domain. Then, each time series in the
high-frequency band is fed into the neural network to predict
the low-frequency time series. We also downsample the time
series with a factor of three to save the computational cost after
spliting the full-band data into low and high frequency parts.
Thus, the actual input size of the neural network is 1000 x
3. After extrapolation, the original low frequency signal is
recovered using bandlimited interpolation.

III. NUMERICAL EXAMPLES

The numerical examples section is divided into four parts.
In the first part, we train the neural network (Fig. 1) to extrap-
olate the low-frequency data of bandlimited multi-component
recordings simulated on the Marmousi2 model (Fig. 2). Then,
we use the extrapolated low-frequencies of multi-component
band-limited data to seed the frequency sweep of elastic FWI
on the Marmousi2 model. In the third part, we study the
generalization ability of the proposed neural network from
acoustic to elastic data. In the last part, we compare the
performance of the architecture in this paper with that in [40]
for low-frequency extrapolation.

A. Low frequency extrapolation of multicomponent data

We first extrapolate the low frequency data below 4 Hz
on the Marmousi2 model (Fig. 2) using 4 — 30 Hz band-
limited data. Each sample in the training and test datasets
is separated into a 0.125 — 4 Hz low-frequency signal and
a 4 — 30 Hz high-frequency signal using a smooth window in
the frequency domain. The time series in the high-frequency
band is directly fed into the neural network to predict the
0.125 — 4 Hz low-frequency time series. To deal with the
multicomponent data, the neural network is trained twice: once
on the training dataset of v, and once on the training dataset
of v,. Both training processes use the ADAM method with a
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Fig. 4. (a) The learning curves and (b) evaluation metrics (R?) of the neural
network trained to extrapolate the 0.125 — 4 Hz low frequencies of v, and
v, from the 4 — 30 Hz band-limited elastic recordings on the training and
validation sets.
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Fig. 5. Extrapolation results on the Marmousi2 model (test model) for the
neural network trained on the Overthrust model: comparison among the (a)
band-limited recordings (4 — 30 Hz), (b) predicted and (c) true low-frequency
recordings (0.125 —4 Hz) of v, and (d) band-limited recordings (4 — 30 Hz),
(e) predicted and (f) true low-frequency recordings (0.125 — 4 Hz) of v.

mini-batch of 32 samples. We refer readers to [40] for more
details about training. Fig. 4(a) and 4(b) show the learning
curves and evaluation metrics (R?) over 20 epochs to predict
the low frequencies of v, and v, on the training and validation
sets. The curves of training loss decay over epochs on both the
training and validation datasets, which indicate that the neural
network does not overfit.

Fig. 5 shows the extrapolation results of both v, and v,
where the source is located at 7.04 km. Most predicted low
frequency events are comparable with the true low frequencies.
Especially, the diving waves are well extrapolated. Fig. 6
compares the amplitude specturm of data with extrapolated
low frequencies, true low frequencies, and their difference, for
the shot in Fig. 5. Despite minor prediction errors, the neural
network can successfully recover the low frequencies of v,
and v, recordings with satisfactory accuracy.

B. Extrapolated elastic full waveform inversion

We perform extrapolated elastic FWI using 4 — 20 Hz band-
limited data on the Marmousi2 model. The lower band of the
band-limited data is 4 Hz. To quantitatively evaluate inverted
models, a metric, relative model error (RME), is calculated
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Fig. 6. Extrapolation results on the Marmousi2 model (test model) for the
neural network trained on the Overthrust model: comparison of the amplitude
spectrum of v (top row) and v, (bottom row). (a) and (d) Data with 0.125—4
Hz predicted low frequencies. (b) and (e) Data with true low frequencies. (c)
and (f) The difference between data with predicted and true low frequencies.
On each panel, the data above the dash line are low frequencies. The data
below the dash line are part of the bandlimited data. The lowest frequency
reported on the vertical axis of each figure is 0.125 Hz, but we estimate that
frequencies below 0.5 Hz are significantly affected by windowing artifacts
coming from the numerical Fourier transform, and should not be assigned a
physical meaning.

USng ||(minv - mtrue)/mtrue||2s where My and Myrye
denote inverted and true models. The water layer is excluded in
this calculation. Fig. 7(a), (d) and (g) show the initial models
of v,, v, and p, respectively. Starting from the crude initial
models, Fig. 7(b) and (c) show the resulting P-wave velocity
models after 30 iterations using extrapolated and true 2—4 Hz
low-frequency data, respectively. The inverted S-wave velocity
models using extrapolated and true low frequencies are shown
in Fig. 7(e) and (f). Also, Fig. 7(h) and (i) compare the inverted
density models using the extrapolated and true 2 — 4 Hz low
frequencies. The RME values of these models are labeled on
the top of each model. Note that the starting RME of density
is smaller than velocity, due to a smaller range of values
on the density model compared with velocity. The inverted
low-wavenumber models of v,, v, and p using extrapolated
data are roughly the same as those using true data. However,
the inversion of density model is not successful since 2 — 4
Hz data are relatively high frequencies for the inversion of
density model. Similar to the observation in [51], we have an
increased RME of the density model after elastic FWI, due to
the overestimation of the density.

Then the inversion is continued with the 4 — 20 Hz band-
limited data. We utilize a multiscale method [54] and sequen-
tially explore the 4 — 6 Hz, 4 — 10 Hz and 4 — 20 Hz band-
limited data in the elastic FWI. In each frequency band, the
number of iterations is 30, 30 and 20, respectively. Fig. 8 (a)-
(f) show the resulting v,, and v, models started from different
low wavenumber models. The inversion results of v, and v
started from 2 — 4 Hz extrapolated data are very close to the
results started from 2 — 4 Hz true data. Conversely, elastic
FWI directly starting from the crude initial models using the
band-limited data shows large errors.
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Fig. 8(g)-(i) shows the resulting density models using the
4 — 20 Hz band-limited data but started from different models
in Fig. 7(g)-(i). Since the starting frequency band (2 — 4 Hz)
is relatively high for the inversion of density on the crude
initial model (Fig. 7(g)), the inverted models using 2 — 4 Hz
data (Fig. 7(h) and (i)) only show high-wavenumber structure
of the density model. With band-limited data involved in the
inversion, the inverted density models (see Fig. 8(h) and (i))
resemble migration results but show the density perturbation
[5]. For a successful inversion of the density model, a much
lower starting frequency band is required to recover the low-
wavenumber structures.

C. Generalization ability of the neural network

In this work, we study the generalization ability of the pro-
posed neural network for low-frequency extrapolation in three
situations: different subsurface structures, acoustic to elastic
data and different elastic simulation codes. First, the previous
example has shown that the neural network can generalize
from the Overthrust model to the Marmousi2 model. The
extrapolated low frequencies predicted by the neural network
trained on the Overthrust model can be used to initialize elastic
FWI on the Marmousi2 model.

Then, we study the generalizability of the proposed neural
network from acoustic to elastic data. Here the acoustic
data are simulated using the same elastic solver (DENISE
[55]) by setting the S-wave velocities as zeros. Instead of
training the neural network twice with two components in
the previous example, here we train the neural network once
and simultaneously predict the low frequencies of both v,
and v, in the same elastic test data set. Fig. 9 compares
the 0.125 — 4 Hz low frequencies of the shot located at 7.04
km extrapolated by the neural network trained using acoustic
v,, only elastic v,, only elastic v, and both elastic v, and
v,. Training with either acoustic data or single component
of the elastic data degrades the accuracy of the extrapolated
low frequencies, compared with training using both elastic
v, and v, components. Additionally, we use the structural
similarity image metric (SSIM, [56]) to quantitatively measure
the similarity between the extrapolated and true low frequency
data. Table II and table III respectively compare the SSIM
index for the shot in Fig. 9 and all shots in the test data
set. Training with both elastic v, and v, achieved the best
similarty for the multicomponent data, thanks to a smaller
generalization gap between the elastic data compared with the
gap from acoustic to elastic data.

Then, we study the generalization ability of the proposed
neural network among different forward modeling codes. We
use ‘fdelmodc’ [57] to simulate the acoustic or elastic training
data sets, whereas the elastic test data set is simulated using
‘DENISE’ [12]. The acoustic training data set is simulated
using the 2D variable density acoustic wave equation on the
P-wave velocity models (see Fig. 3) and associated density
models used in elastic simulation. As can be seen in Fig. 10,
training with the acoustic v, or elastic v, cannot retrieve the
P-S polarity reversal effect on elastic v,. Training with elastic
v, cannot recover the continuity of events at near zero-offset.

TABLE 11
COMPARISON OF THE SSIM INDEX BETWEEN EXTRAPOLATED AND TRUE
LOW FREQUENCY DATA FOR THE SHOT IN FIG 9

component [ acoustic v, [ elastic v, [ elastic v, [ elastic v, and v,

elastic vy 0.6379 0.6080 0.6074 0.6565
elastic v, 0.6328 0.6248 0.5886 0.6635
TABLE III

COMPARISON OF THE SSIM INDEX BETWEEN EXTRAPOLATED AND TRUE
LOW FREQUENCY DATA FOR ALL SHOTS IN THE TEST DATA SET

component [ acoustic v [ elastic v, [ elastic v, [ elastic v, and v

elastic vy 0.6390 0.6145 0.6275 0.6595

0.6388 0.6089 0.5762 0.6493

elastic v,

Instead, training with both elastic v, and v,, enables the neural
network to retrieve the P-S polarity reversal effect on elastic
v, and continuity of events at near zero-offset on elastic v,.
The numerical results demonstrate that the generalization gap
from acoustic to elasic data becomes larger when the training
and test data sets are simulated using different solvers. The
extrapolation accuracy is much poorer if the elastic training
data set is simulated using a different code, which is even
harder than the generalization over different orders of the same
solver [40]. We speculate that the poorer performance may be
attributed to different shape of the spectra simulated using
‘fdelmodc’ and ‘DENISE’.

Finally, we compare the performance of ARCHI and
ARCH?2 using the same training dataset and hyperparameters.
Each network is trained twice with the training dataset of
v, and the training dataset of v,. According to the learning
curves, the training of ARCHI is much more stable than
that of ARCH2. ARCHI1 also requires less training time,
due to the less trainable parameters compared with ARCH?2.
Fig. 11 shows the extrapolated elastic FWI results started from
the 2-4 Hz extrapolated low frequency data using ARCH2.
According to the comparison of the inverted models started
from the extrapolated data using ARCH1 and ARCH2, both
neural networks are able to provide sufficient accuracy for the
inversion of v, and v.

IV. DISCUSSION AND LIMITATIONS
A. Physical interpretation

Is the problem at all solvable? We claim that neural net-
works might be able to extend the bandwidth of a survey,
but it is important to understand why the problem might
even be solvable in the first place. We believe the setting
for bandwidth extension is favorable when 1) the waves are
impulsive, and 2) the medium in which the waves propagate
is mostly nondispersive. In that case, changing the frequency
content of a wave is a matter of identifying isolated waves,
and changing their time signature while keeping the arrival
time unchanged. This setting is quite similar to changing the
pitch of speech — phonemes should be spoken in a different
voice, but at the same time as the original recording.

Can we expect the waves to be nondispersive? If the
characteristic length scale of the medium in which the waves
travel is either much larger than the wavelength (geometrical
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optics limit), or much smaller than the wavelength (homoge-
nization), we can indeed expect that the wave speed is mostly
independent of the frequency content of the wave.

Is the problem necessarily hard? Frequency extrapolation
is in general ill-posed, but as we mention above, there are
(ideal) settings where it is a well-posed problem. Changing
the frequency content of an impulsive wave from high to low
will in general create interference, constructive or destructive,
because the footprint of the wave is now larger. This is
fine. But changing the frequency content from low to high
frequencies might in general be harder, since it would require
undoing such interference. In this paper, we do not attempt to
generate unobserved high frequencies.

Does a neural network know the right physics to compute
low frequencies? Neural networks are built as universal ap-
proximators, and we observe in this paper that they do not
need to be “enhanced” with physical principles to work —
only the training set needs to be representative of the physics.
It is unclear to us what operation the network performs to
be successful, but it is an important research question going
forward.

Might a neural network even have the capability to perform
[frequency extrapolation? Besides being a universal approxima-
tor, yes, there are simple examples to support the idea that a
simple neural network can peform the required nonlinear sig-
nal processing for frequency extrapolation. A crude example
is the following sequence of operations, which can easily be
implemented by a shallow network with ReLU activators:

o Take a high-frequency waveform, remove its negative
part. This operation creates low frequencies all the way
to w = 0;

« Convolve the result by an adequate filter that substitutes
the low-frequency wavelet for the positive part of the

high-frequency wavelet. No division by zero should be
required in the frequency domain to obtain such a filter.

While these two operations are far from providing an accurate
predictor, they are indicative of the kind of operation that
one might require of the neural network. It is also worth
pointing out that there are reasonable solutions to the question
of frequency extrapolation that do not involve neural networks,
such as the work of one of us on phase tracking [32], [33].

B. Limitations and variations

Recovering the density using FWI is very challenging,
independently of the bandwidth extension question, for the
following reasons. (1) Cross-talk happens using short-offset
data since P-wave velocity and density have the same radiation
patterns at short apertures. (2) The variations in density are
smaller than those in velocities. (3) Inversion of density
requires ultra-low frequencies. Although elastic FWI does
not always allow to correctly estimate density, it stands a
better chance of properly reconstructing velocities, with either
extrapolated or true low frequencies.

In extrapolated FWI, the choice of starting frequency is a
trade-off between the accuracy of extrapolated low frequency
data and the lowest frequency to mitigate the cycle-skipping
problem. We start elastic FWI with 2 — 4 Hz extrapolated low
frequency data due to the insufficient extrapolation accuracy
in the near-zero frequency range. The accuracy of the 2—4 Hz
extrapolated low frequency data is sufficient for elastic FWI of
P-wave and S-wave velocities when starting from 4 Hz band-
limited data. However, the starting frequency range 2—4 Hz is
still relatively high for the inversion of density, so the inverted
density model is lack of the low-wavenumber structure.

C. Future work on the application to field data

The main challenge in the application of this papers idea to
field data is the lack of availability of the low frequencies,
i.e., the data come unlabeled. Training the neural network
on synthetic data and testing it on field data may be one
solution. It is helpful to collect a realistic training dataset in
the following ways to reduce the generalization error on the
field test dataset:

o First, prior knowledge about the model that is being
inverted can be used to build the training models. For
instance, we can build training models with the same
depth of water bottom if the depth has been estimated
in advance.

e Second, considering the inevitable discrepancy of am-
plitude between field and simulated data, we should
normalize the band-limited data in the same way as
synthetic data. Note that it is not necessary to recover
the original amplitude of the field data if FWI uses an
amplitude-insensitive cost function.

o Furthermore, the source signal is assumed to be known
for extrapolated elastic FWI in this paper. However, for
field data, the source signal may vary shot by shot. We
can retrieve the source wavelet of the field dataset first,
and then artificially boost the low-frequency energy after
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denoising. The new source signal can be used to synthe-
size the training dataset for low-frequency extrapolation.
It can also be the source wavelet in the following FWI
using the extrapolated low-frequency data. In this way,
the uncertainty of the source can be controlled to some
extent.

With a careful design of the training data set, the generaliza-
tion error from synthetic to real data is expected to be small.
Otherwise, we may need to propose a new deep learning model
that can deal with the unlabeled band-limited data directly.

V. CONCLUSION

To relieve the dependency of elastic FWI on starting mod-
els, low-frequency extrapolation of multi-component seismic
recordings is implemented to computationally recover the
missing low frequencies from band-limited elastic data. The
deep learning model is designed with a large receptive field
using dilated convolution to increase the receptive field expo-
nentially with depth. By training the neural network with both
horizontal and vertical components, we can extrapolate the low
frequencies of multi-component band-limited recordings. The
extrapolated 0.125 — 4 Hz low frequencies match well with
the true low-frequency data on the Marmousi2 model. Elastic
FWTI using 2 — 4 Hz extrapolated data shows similar results
to the true low frequencies. The accuracy of the extrapolated
low frequencies is enough to provide low-wavenumber starting
models for elastic FWI of P-wave and S-wave velocities on
data band-limited above 4Hz.

The generalization ability of the neural network from acous-
tic to elastic data is studied in this paper. The neural network
trained on purely acoustic data shows larger prediction error
on elastic test dataset compared to the neural network trained
on elastic data. Therefore, collecting more realistic elastic
training dataset will help to process the field data with strong
elastic effects. Furthermore, it might be worthwhile for future
studies to consider designing neural networks with multi-
channel inputs and multi-channel outputs, which may enable
bandwidth extension of elastic data to benefit from the implicit
relationship among different components.
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