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SUMMARY

Under the assumptions of diffuse wavefields or energy
equipartitioning, theoretical studies showed that the Green’s
function can be retrieved from the cross-correlation of ambi-
ent noise in seismic interferometry (SI). However, in practice,
correlograms are not equal to the empirical Green’s function
since the assumptions for correlation-based SI are generally
not satisfied in realistic situations. In the framework of super-
vised learning, we propose to train deep neural networks to
overcome two limitations of correlation-based SI: the tempo-
ral limitation of passive recordings, and the spatial limitation
of the random source distribution. Deep neural networks are
trained to implicitly find the relationship between the empirical
Green’s function and the correlograms, and then used to extract
the correct Green’s function from ambient noise. The input of
the network is correlograms (a virtual shot gather) and the de-
sired output is the empirical Green’s function (the active shot
gather). Numerical examples show that a deep network aware
of the source directionality (through a preliminary beamform-
ing step) can help mitigate some of the challenges associated
with inhomogeneous source distributions. In this work, all the
numerical examples are based on the retrieval of P-wave re-
flections at exploration scales, and are conducted on synthetic
data. Many precautions are taken to avoid the “learning crime”
where the training and testing scenarios are too closely related.
We use the CycleGAN architecture in all our numerical exper-
iments.

INTRODUCTION

Seismic interferometry generally refers to the process of gen-
erating new seismic responses (Green’s function retrieval) by
correlating seismic noise recordings of different receivers (Schus-
ter et al., 2004; Wapenaar and Fokkema, 2006). Since Aki
(1957) proposed to use statistical properties of seismic noise
to infer the Earth’s structure, SI applications have ranged from
crust and upper-mantle structure investigation (Yao et al., 2008),
to natural resources exploration, to urban monitoring.

Claerbout (1968) pioneered the SI algorithm by autocorrelat-
ing a transmission seismogram to retrieve its reflection. Sub-
sequently, the principle of correlation-based SI has been de-
rived via normal-mode summation (Lobkis and Weaver, 2001),
time reversal (Roux and Fink, 2003), representation theorems
(Wapenaar, 2004) and stationary phase analysis (Snieder et al.,
2006) by assuming that the ambient wavefield is equiparti-
tioned.

The challenges of correlation-based SI mainly concern extend-
ing the theory to account for real-world noise and media (Cur-
tis et al., 2006; Tsai, 2010; Fichtner, 2014). Correct retrieval of
the Green’s function relies on the prerequisite of uncorrelated

and homogeneously distributed noise sources in media without
intrinsic losses. A strong localized source outside the station-
ary zones can cause spurious arrivals resulting from imperfect
cancellations of nonphysical amplitudes (Snieder et al., 2008).
However, natural noise sources are always correlated and can-
not illuminate the region of interest from all sides equally.
Also, seismic waves in real-world media can suffer from geo-
metrical spreading and attenuation (hence lowered amplitudes).
In addition, there is the issue of statistical stability – large de-
viations in the case of small sample size (here, short recording
window).

In addition to cross-correlations, alternative methods for SI in-
clude: deconvolution (Vasconcelos and Snieder, 2008), multi-
dimension deconvolution (Wapenaar et al., 2008), cross-coherence
(Nakata et al., 2011) and coda wave interferometry (Snieder,
2004; Shapiro et al., 2005). More robust pre-processing and
post-processing methods are proposed to enhance the reliabil-
ity of Green’s function extraction from cross-correlation, e.g.,
directional balancing (Curtis and Halliday, 2010) and iterative
denoising (Zhang et al., 2015).

Deep learning (LeCun et al., 2015) enables neural networks
with multiple layers to discover intricate structure from large
data sets and learn high-level representations for reasonable
prediction. Over the past few years, it was used in geophysics
for solving inverse problems (Khoo and Ying, 2019), low fre-
quency extrapolation (Sun and Demanet, 2020) and velocity
model building (Araya-Polo et al., 2018; Zhang and Lin, 2020).

In passive data processing, researchers have leveraged machine
learning in different ways. Clancy et al. (2018) use deep learn-
ing to measure the time lapse between two correlograms. Bharad-
waj et al. (2020) design an autoencoder for time-lapse moni-
toring with passive seismic data. Viens and Van Houtte (2020)
train an autoencoder to denoise noise correlation functions with
a time resolution of 20 minutes. Zhang et al. (2020) extract
dispersion curves from ambient noise correlations using deep
learning. As for unsupervised learning, Viens and Iwata (2020)
use clustering method to improve the quality of correlograms
calulated via deconvolution. Seydoux et al. (2020) use unsu-
pervised deep learning to distinguish between earthquake sig-
nals and background noises. Jakkampudi et al. (2020); Binder
and Tura (2020); Stork et al. (2020) apply machine learning
for signal detection from ambient noise under a classification
framework.

To handle the practical challenges in SI applications, we pro-
pose to use supervised deep learning to extract the correct Green’s
function from ambient noise wavefields with limited record-
ing duration and localized source distribution. We focus on
retrieval of the Greens function at exploration scales. Specif-
ically, we aim to retrieve reflected waves from ambient noise
that agree with (here, simulated) active surveys. Direct map-
ping from noise to signal is optional but requires a careful de-
sign of the neural network. To relieve the difficulty of learning,
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we use raw correlograms as input to the network, and train the
latter to output reflections, i.e., seismic events from an active
source. Numerical examples have shown that deep learning
with proper setting can overcome the temporal limitation of
noise recording length and spatial limitation of source distri-
bution in correlation-based SI. We believe that seismic imag-
ing with deep-learning-retrieved reflections from short noise
recordings, and less-than-ideal source characteristics, offers an
interesting new point of view for real-time monitoring.

DATA AND METHOD

Review of correlation-based interferometry

Correlation-based SI retrieves Green’s function from N avail-
able passive measurements uobs(xA, t) and uobs(xB, t) using the
relation (Wapenaar, 2004; Wapenaar and Fokkema, 2006):

{G(xA,xB, t)+G(xA,xB,−t)}∗S(t)≈
N∑
i

ui
obs(xA,−t)∗ui

obs(xB, t).

(1)
Here, G(xA,xB,±t) is the Green’s function between positions
xA and xB in a homogeneous lossless acoustic medium. ±t
denotes the causal and acausal parts of the Green’s function.
S(t) stands for the autocorrelation of the noise sources, and the
asterisk denotes convolution.

The derivation of this relation relies on the assumption that
ambient noise sources are uncorrelated and surround the area
of interest from all directions. However, correlograms are not
equal to Green’s function when the assumption is not fullfilled.
In addition to an amplitude error, artifacts will be introduced
in the reconstructed signal due to the fact that the source loca-
tions do not constitute a closed surface (Snieder et al., 2006;
Wapenaar, 2006; Thorbecke and Wapenaar, 2008).

Deep learning for seismic interferometry

We use deep learning to extract the correct Green’s function
from correlograms in a supervised manner to overcome the
practical challenges of SI in imperfect situations: short record-
ing time and inhomogeneous source distribution. The raw in-
put x of the neural network is virtual shot gathers (correlo-
grams) and the active shot gathers serve as the desired output
(label z).

We collect both the training and test data sets from a synthetic
data set simulated on several 2D models extracted from the 3D
SEG/EAGE Overthrust Model (Aminzadeh et al., 1996). In to-
tal, we have one test model and 16 training models. Figure 1a
and Figure 1b show the P-wave velocity of the test model and
the training model I, respectively. We use the structural sim-
ilarity image metric (SSIM, Wang et al. (2004)) to measure
the similarity between a test model and a training model. Al-
though it could be negative, the SSIM formula typically com-
putes a continuous number between 0.0 and 1.0, where 1.0
corresponds to identical images and 0.0 corresponds to com-
pletely dissimilar images. Figure 1c shows the map of SSIM
index between the test model and the training model I. Fig-
ure 1d shows the average SSIM index between the test model

and all the training models. The low similarity guarantees the
suitability of the test dataset for evaluating the trained neural
networks.

We follow the method in Thorbecke and Draganov (2011) to
simulate the ambient noise recordings. The wavefields are sim-
ulated by solving the 2D acoustic wave equation in the time do-
main using the finite difference method. A perfectly matched
layer (PML) is applied to the bottom, right and left boundary
of each model, while a free surface condition is applied to the
top of the model. With an interval of 40 m, 224 receivers are
evenly placed from 520 m to 9480 m on the top of each model.
With a sampling rate of 8 ms, we record 300 s passive data on
the test model and 120 s passive data on the training model.
During the total recording time, 1000 noise sources are trig-
gered with random starting times at random locations. The
amplitude and duration of these noise sources are random, but
the maximum frequency of each noise source is 12 Hz.

(a) (b)

(c) (d)

Figure 1: (a) Test model. (b) Training model I. (c) The map of
SSIM index between the test model and training model I. (d)
The average SSIM index between the test model with all the
training models.

(a) (b) (c)

(d) (e) (f)

Figure 2: Comparison of (a) source locations on the test model,
(b) the first choice and (c) the second choice of source loca-
tions on the training model I for simulating training datasets;
(d)-(f) beamforming results of the noise recordings with source
locations in (a)-(c), respectively.

To study the imperfect situation of inhomogeneous source dis-
tribution, we place all the noise sources in one part of the sub-
surface. Figure 2a shows the locations of 1000 random noise
sources in the rectangular region of 5000 m≤ x≤ 8000 m and
2000 m ≤ z ≤ 3000 m. To reduce the generalization gap, an
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ideal training data set should have the same source distribu-
tion as the test data set. However, the source configuration of
the test dataset is usually unknown in practice. Therefore, we
determine the source directionality of the passive recordings
using a beamforming method, and use the estimated source
locations to simulate the training datasets when the sources
are localized in the subsurface. Among the methods to esti-
mate the angle of arrival, we choose MUltiple SIgnal Clas-
sification (MUSIC, Schmidt (1986)) for its higher resolution
compared with classical beamforming approaches. This paper
only considers the estimation of a single quantity, the angle of
the leading direction of incidence of the noise, to then inform
the training step of the network by providing noise distribu-
tions calibrated on this single parameter. We do not attempt
to match the complete beam pattern, although this could be an
interesting direction for future research.

On the test model, the beamforming result (Figure 2d) reveals
that the source direction ranges from 45◦ to 90◦ respect to the
middle of the receiver array, which is roughly consistent with
the true angle of the center of the source area indicated by
the green star. To simulate a training dataset with a similar
source direction as the test dataset, we randomly place 1100
sources in the rectangular region of 5330 m ≤ x ≤ 8330 m
and 2300 m ≤ z ≤ 3800 m on each training model. The neu-
ral network is expected to achieve good performance when
trained using the designed source configuration (Figure 2b).
For comparison, we put sources in another region of each train-
ing model (Figure 2c) to investigate the importance of the prior
knowledge of the source distribution. The beamforming result
(Figure 2f) also shows that the source direction is very differ-
ent from that on the test model.

Figure 3: A cartoon flowchart of the CycleGAN used for re-
flection retrieval from ambient noise. The architecture con-
tains two generators: GAB and GBA, and two discriminators:
DB and DA. The network′s input x is a virtual shot gather in
the domain A. Domain B contains the active shot gathers. The
images in the domain A and B are aligned with the same vir-
tual/active shot location.

We formulate reflection retrieval from ambient noise as an image-
to-image translation problem using Cycle-Consistent Adver-
sarial Networks (CycleGAN, Zhu et al. (2017)). CycleGAN
is one of the most popular architectures for learning to trans-
late an image from a source domain A to a target domain B.
Figure 3 summarizes the flowchart of the CycleGAN. In our

application, the source domain A contains 2D images of the
virtual shot gather and the target domain B is a collection of
2D images of the active shot gather. We train the CycleGAN
using a training set of aligned images pairs. Both input x and
output y have equivalent dimensions of nt× ntr where nt and
ntr are numbers of recording points and receivers, respectively.

The CycleGAN contains two generators GAB : A→B and GBA :
B→ A, and associated adversarial discriminators DB and DA.
DB encourages GAB to generate images from domain A indis-
tinguishable from domain B by training an adversarial loss.
The loss and specific architectures of GAB, GBA, DB, and DA
are the same as Zhu et al. (2017). During training, we use
adaptive moment estimation (Adam, Kingma and Ba (2014))
to simultaneously update GAB, GBA, DB, and DA with a mini-
batch of one. The learning rate is set as 2×10−5.

The subsequent preprocessing steps are followed to generate
each pair of images in the training and test data sets:

• The input x is a virtual short gather (correlograms);

• The desired output z (label) is the active shot gather
generated by placing an active source at the position
of the virtual source. Here we use a Ricker wavelet
with 6 Hz dominate frequency and 12 Hz maximum
frequency as the active source;

• Both the active and virtual shot gathers should be band-
pass filtered to equalize the frequency components. Here
both the active and virtual shot gathers have roughly
the same frequency components so we omit this step;

• We taper the shot gathers with zero at the beginning
of each time series using a time window of 0.16 s to
remove the extreme large amplitude at the positions of
the virtual/active shot locations;

• We normalize the input x and label z to [−1,1];

After preprocessing, we use each pair of the virtual and ac-
tive shot gathers with the same shot location as the 2D images
for the input and target of the CycleGAN. Specifically, with
the time dimension of nt = 496 and the distance dimension of
ntr = 224, the shot gather to be processed is 3.96 s in time and
8920 m in distance, respectively. As a result, for each case, we
have a total of 3584 training image pairs (16 training models
× 224 shots per model) and 224 test image pairs (1 test model
× 224 shots per model). Furthermore, we retain the effect of
the wavelet on the virtual and active shot gathers during train-
ing. Consequently, deconvolution of the source wavelet from
the prediction of the neural networks is required to retrieve
Green’s function from reflections. The source wavelet can be
approximated by the Ricker wavelet used in the simulation of
the active-source common shot gather.

NUMERICAL RESULTS

After training with three epochs, Figure 4 compares the vir-
tual shot gather, the active shot gather and the GAB predic-
tion where the virtual/active shot is located at x = 6480 m on
the test model. Since the source distribution is not suitable
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for correlation-based SI, many spurious events can be seen on
the correlograms. Compared with the correlograms, the GAB
prediction (Figure 4d) generally shows good agreement with
the active shot gather. However, deeper reflections have lower
SNR and are challenging for the GAB to detect and recover
from correlograms. Without the prior knowledge of the source
locations, the neural network loses its generalization ability
among different source directions and creates more artifacts
than the passive correlation (Figure 4c).

We use the test model (after smoothing the structure less than
1 km with a Gaussian filter) to migrate the virtual, GAB pre-
dicted and active shot gathers to evaluate the performance of
the passive recordings for seismic imaging. 112 shots with an
interval of 80 m are migrated using the phase shift plus inter-
polation (PSPI) method (Gazdag and Sguazzero, 1984) shot-
by-shot and then summed up for the final imaging results (Fig-
ure 5). Although some discrepancies exist in the near surface,
imaging using the GAB prediction (Figure 5d) removes many
artifacts due to spurious events compared to that using the raw
virtual shot gathers. In particular, imaging using the GAB pre-
diction is less contaminated by multiples compared with the re-
sult using the active shot gathers. Although we trained the neu-
ral network with data sets that contain multiples, the surface-
related multiples arrive at later time and thus have less SNR
compared to the primaries on the virtual shot gathers. The
trained GAB predicts fewer multiples and thus seismic imaging
using the predicted gathers has fewer artifacts due to multiples.

Since the source distribution is inhomogeneous, the left area
without sources is not illuminated and thus is not imaged by
either type of passive data. Most reflectors on the image with
the predicted shot gathers from the similar source direction
(Figure 5d) are comparable to the one using the active shot
gathers (Figure 5b). In contrast, although the overall image in
Figure 5c shows the layered structure of the subsurface, the
positions of several major reflectors are wrong. Moreover,
the shallow structure is not accurately imaged using the pre-
dicted shot gathers from the different source distribution. The
comparison of the imaging results in Figure 5c and Figure 5d
demonstrates that the prior knowledge of the source locations
is helpful when dealing with passive recordings from a local-
ized source distribution.

CONCLUSIONS

We propose to use supervised learning to handle the practi-
cal challenges of seismic interferometry in realistic situations.
By substituting ambient noise for an active source, we train
deep neural networks to reconstruct the reflections from cor-
relograms. To overcome the temporal limitation of the noise
recording length, the neural networks are trained to retrieve
reflections from only 300 s passive measurements. To over-
come the spatial limitation of source distribution, the neural
networks are trained on noise data generated from a direc-
tional source distribution. Numerical examples demonstrate
that deep learning can help with seismic interferometry to ex-
tract reasonably accurate signals from ambient noise in real-
istic situations. Instead of simply estimating travel times or

image reflectors from ambient noise, the retrieved reflections
may be used in seismic imaging with the full Green’s function.
The new technology may help with near real-time monitoring
of the Earth’s dynamics in a wide ranges of areas, for example,
urban environments.

(a) (b)

(c) (d)

Figure 4: Comparison among (a) the virtual shot gather, (b)
the active shot gather, (c) the predicted shot gather by the GAB
trained with different and (d) similar source distributions.

(a) (b)

(c) (d)

Figure 5: Comparison of prestack depth migration results us-
ing (a) virtual shot gathers, (b) active shot gathers, (c) pre-
dicted shot gathers by the GAB trained with different and (d)
similar source distributions.
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