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SUMMARY

Full waveform inversion (FWI) strongly depends on an accu-
rate starting model to succeed. This is particularly true in the
elastic regime: The cycle-skipping phenomenon is more se-
vere in elastic FWI compared to acoustic FWI, due to the short
S-wave wavelength. In this note, we extend our work on ex-
trapolated FWI (EFWI) by proposing to synthesize the low fre-
quencies of multi-component elastic seismic records, and use
those ”artificial” low frequencies to seed the frequency sweep
of elastic FWI. By leveraging deep learning technologies, we
separately train two neural networks to extrapolate the low fre-
quencies of elastic data (vertical and horizontal components
of particle velocity), respectively. Numerical example on the
Marmousi2 model shows that the 2-4Hz low frequency data
extrapolated from band-limited data above 4Hz provide good
starting models for elastic FWI of P-wave and S-wave veloc-
ities. Additionally, we study the generalization ability of the
proposed neural network over different physical models. For
elastic test data, collecting the training dataset by elastic simu-
lation shows better extrapolation accuracy than acoustic simu-
lation, i.e., a smaller generalization gap.

INTRODUCTION

Full waveform inversion is well-known for its potential to pro-
vide quantitative earth properties of complex subsurface struc-
tures. Acoustic FWI is widely used and has been successfully
applied to real seismic data. However, most seismic data have
strong elastic effects. Acoustic approximation is insufficient
to estimate correct reflections and introduces additional arti-
facts to FWI results (Plessix et al., 2013; Stopin et al., 2014).
Therefore, there is an urgent need to develop a robust elastic
FWI method for high-resolution earth model building.

Theoretical studies have shown the ability of elastic FWI to
retrieve realistic properties of the subsurface (Tarantola, 1986;
Mora, 1987). However, it has difficulty handling real data sets.
Elastic FWI is very sensitive to accuracy of starting model,
correct estimation of density, proper definition of multi-parameter
classes, and noise level (Brossier et al., 2010). The complex
wave phenomena in elastic wavefields bring new challenges to
FWI.

Among many factors that affect the success of elastic FWI, the
lowest starting frequency is an essential one, given an accu-
rate starting model is unavailable. Compared to acoustic FWI,
the nonlinearity of elastic FWI is more severe due to the short
S-wave propagating wavelength. Therefore, elastic FWI al-
ways requires an lower starting frequency compared to acous-
tic FWI. Additionally, the parameter cross-talk problem exists
in elastic FWI and becomes more pronounced at higher fre-
quencies, so ultra-low frequencies are required for a successful

inversion of S-wave velocity and density.

In synthetic studies of elastic FWI, Brossier et al. (2009) invert
the overthrust model (Aminzadeh et al., 1997) from 1.7Hz.
Brossier et al. (2010) invert the Valhall model (Sirgue et al.,
2009) from 2Hz. Both inversion workflows start from Gaus-
sian smoothing of true models. Moreover, Choi et al. (2008)
invert the Marmousi2 model (Martin et al., 2006) using a velocity-
gradient starting model but a very low frequency (0.16Hz). For
a successful inversion of the Marmousi2 density model, Köhn
et al. (2012) use 0-2Hz in the first stage of multi-scale FWI.
Jeong et al. (2012) invert the same model from 0.2Hz.

Only few applications of elastic FWI to real data sets are re-
ported (Crase et al., 1990; Sears et al., 2010; Marjanović et al.,
2018). Vigh et al. (2014) use 3.5Hz as the starting frequency of
elastic FWI given that the initial models are accurate enough.
Raknes et al. (2015) apply 3D elastic FWI to update P-wave
velocity and obtain S-wave velocity and density using empir-
ical relationships. Borisov et al. (2020) perform elastic FWI
involving surface waves in the band of 5-15Hz for a land data
set.

New developments in acquisition enhance the recent successes
of FWI by measuring data with lower frequencies and longer
offsets (Mahrooqi et al., 2012; Brenders et al., 2018). How-
ever, only acoustic FWI is applied to the land data set with low
frequencies down to 1.5 Hz (Plessix et al., 2012). In addition
to the expensive acquisition cost for the low-frequency signals,
direct use of the field low-frequency data requires dedicated
pre-processing steps, including travel-time tomography, for an
accurate enough model to initialize FWI. The final inversion
results strongly rely on the starting tomography model. Hence,
retrieving reliable low-frequency data remains challenging for
elastic FWI to relieve its dependency on starting models.

Deep learning is an emerging technology in many aspects of
exploration geophysics. In seismic inversion, several groups
have experimented with directly mapping data to model using
deep learning (Araya-Polo et al., 2018; Yang and Ma, 2019).
Other groups use deep learning as a signal processing step to
acquire reasonable data for inversion. For instance, Li et al.
(2019) use deep learning to remove elastic artifacts for acoustic
FWI. Sun and Demanet (2018); Hu et al. (2019); Ovcharenko
et al. (2019) propose different architecture of convolutional
neural networks (CNN) to extrapolate the missing low-frequency
data from band-limited recordings.

In this note, we extend our workflow of extrapolated FWI with
deep learning (Sun and Demanet, 2020) into elastic regime.
We train two separate neural networks, one to predict the low-
frequency data of the horizontal components (vx) and one to
predict the low frequencies of the vertical components (vy).
The extrapolated low frequency data are used to initialize elas-
tic FWI from a crude starting model. Moreover, to investi-
gate the generalization ability of neural networks over differ-
ent physical models, we compare the extrapolation results of
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the neural networks trained on elastic data and acoustic data to
predict the elastic low-frequency data.

METHOD

A brief review of elastic FWI

The elastic FWI is implemented in the time domain to invert
the P-wave velocities (vp) and S-wave velocities (vs) simulta-
neously. The object function E is formulated as

E =
1
2

δdT
δd =

1
2

∑
s

∑
r

∫
[ucal −uobs]

2dt, (1)

where d are the residuals between observed wavefields uobs
and calculated wavefields ucal . In 2D, both uobs and ucal con-
tain vx and vy components of elastic wavefields. The gradient
∂E
∂m of model parameter m is calculated in terms of vp and vs
using the velocity-stress formula of the elastic wave equation
(Köhn et al., 2012). The starting models m0 are updated using
L-BFGS method (Nocedal and Wright, 2006).

CNN architecture for low-frequency extrapolation

We use the architecture in Sun and Demanet (2020). The out-
put and input are the same seismic recording in the low and
high frequency band, respectively. Although only one trace
is plotted in Figure 1, the proposed neural network can eas-
ily explore multiple traces of the shot gather for multi-trace
extrapolation by increasing the size of kernel from 200 × 1
to 200× ntr, where ntr is the number of the input traces. In
2D, the elastic data contain horizontal and vertical compo-
nents. Therefore, we separately train the same neural network
twice on two different training datasets: one contains vx and
the other contains vy. In this way, we are able to predict the
low-frequency signals of both components of the elastic data
with enough accuracy for elastic FWI.

Figure 1: The architecture of CNN (Sun and Demanet, 2020).

Training and test datasets

The training and test datasets are simulated on the elastic train-
ing and test models with three parameters: vp, vs and ρ . The
Marmousi2 model is referred to as the test model (Figure 2).
The training models (Figure 3) are six batches randomly ex-
tracted from the Marmousi2 model. The size of each model is
500×174 with a grid spacing of 20m, including a water layer
on the top of each model with a depth of 460m. 100 shots are
excited evenly from 800m to 8720m in the water layer at the
same depth of 40m. A Ricker wavelet with a dominant fre-
quency of 10Hz is used as the source signal. 400 receivers are

placed under the water layer with a depth of 460m to record
vx and vy of the elastic wavefields. The sampling rate and
the recording time is 0.02s and 6s, respectively. Two training
datasets are collected to separately process each component
of the 2D elastic data. By trace-by-trace extrapolation setup,
there are 6× 100× 400 = 240,000 training samples in each
training dataset and 1× 100× 400 = 40,000 test samples in
each test dataset. Each sample in the training and test dataset
is separated into a low-frequency signal and a high-frequency
signal using a smooth window in the frequency domain. Then,
the time series in the high-frequency band is fed into the neural
network to predict the low-frequency time series.
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Figure 2: The Marmousi2 model (test model): (a)vp and (b)vs.
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Figure 3: The training models randomly extracted from the
Marmousi2 model. Each training model contains three param-
eters: vp, vs and ρ .

NUMERICAL EXAMPLES

We first extrapolate the low frequency data below 5Hz on the
Marmousi2 model (Figure 2) using 5-25Hz band-limited data.
The neural networks are trained using ADAM method with a
mini-batch of 32 samples. We refer readers to Sun and De-
manet (2020) for more details about training. Figures 4(a)
and 4(b) show the training process over 40 epochs. Figure 5
shows the extrapolation results of both vx and vy where the
source is located at 7.04km. Figures 6(a) and 6(b) compare
the amplitude and phase spectrum of vy and vx at x = 6.18km
among the band-limited recording (5.0 − 25.0Hz), the full-
band recording with true and predicted low frequencies (0.1−
5.0Hz). Both neural networks can successfully recover the low
frequencies of vx and vy recordings with satisfactory accuracy.
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Figure 4: The learning curves of the CNN trained to extrapo-
late the low frequencies of (a) vy and (b) vx of the band-limited
elastic recordings
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Figure 5: The extrapolation result on the Marmousi2 model:
comparison among the (a) band-limited recordings (5.0 −
25.0Hz), (b) predicted and (c) true low-frequency recordings
(0.1 − 5.0Hz) of vy and (d) band-limited recordings (5.0 −
25.0Hz), (e) predicted and (f) true low-frequency recordings
(0.1−5.0Hz) of vx.
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Figure 6: Extrapolation results of CNN trained on elastic data:
comparison of the amplitude and phase spectrum of (a) vy and
(b) vx at x = 6.18km among the band-limited recording (5.0−
25.0Hz), the recording (0.1−25.0Hz) with true and predicted
low frequencies (0.1−5.0Hz).
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Figure 7: Extrapolation results of CNN trained on acoustic
data: comparison of the amplitude and phase spectrum of (a)
vy and (b) vx at x = 6.18km among the band-limited record-
ing (5.0−25.0Hz), the recording (0.1−25.0Hz) with true and
predicted low frequencies (0.1−5.0Hz).

To study the generalization ability of the proposed neural net-
work over different physical models, we train the same neu-
ral network on acoustic training dataset and predict the low
frequencies of both vx and vy in the same elastic test dataset.
The acoustic training dataset is simulated using the acoustic
wave equation on only the P-wave velocity model. Figures 7(a)
and 7(b) show the amplitude and phase spectrum of vy and vx at
x = 6.18km after training with the same procedure. Compared
with the results in Figure 6, the extrapolation accuracy of the
same trace in the test data is poorer on acoustic training dataset
than elastic training dataset. This is an indicator that the neural
network is difficult to generalize to different physical models.
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Figure 8: The initial models for elastic FWI: (a)vp and (b)vs.

Finally, we perform EFWI using 4-20Hz band-limited data on
the Marmousi2 model. Different from previous examples, a
free surface boundary condition is applied to the top of the
model. Starting from the crude initial models in Figure 8, Fig-
ure 9 and Figure 10 show the resulting inversion models after
30 iterations using extrapolated and true 2-4Hz low-frequency
data, respectively. Then the inversion is continued using a mul-
tiscale method with the band-limited data (4-6Hz, 4-10Hz and
4-20Hz). After 80 iterations, the inversion result started from
2-4Hz extrapolated data (Figure 11) is very close to the result
started from 2-4Hz true data (Figure 12). Instead, elastic FWI
directly starting from the crude initial models using the band-
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limited data shows large errors (Figure 13).
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Figure 9: The inverted (a)vp and (b)vs models using 2-4Hz
extrapolated low-frequency data.
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Figure 10: The inverted (a)vp and (b)vs models using 2-4Hz
true low-frequency data.

CONCLUSION

To relieve the dependency of elastic FWI on starting mod-
els, low-frequency extrapolation of multi-component seismic
recordings is implemented to computationally recover the miss-
ing low frequencies from band-limited elastic data. By train-
ing the neural network twice, once with a dataset of horizontal
components and once with a dataset of vertical components,
we can extrapolate the low frequencies of multi-component
band-limited recordings separately. The extrapolated 0-5Hz
low frequencies match well with the true low-frequency data
on the Marmousi2 model. Elastic FWI using 2-4Hz extrap-
olated data shows similar results to the true low frequencies.
The accuracy of the extrapolated low frequencies is enough to
provide low-wavenumber starting models for elastic FWI on
band-limited data above 4Hz.

The generalization ability of the neural network over differ-
ent physical models is studied in this note. The neural network
trained on purely acoustic data shows larger prediction error on
elastic test dataset compared to the neural network trained on
elastic data. Therefore, collecting more realistic elastic train-
ing dataset will help to process the field data with strong elastic
effects.
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Figure 11: The inverted (a)vp and (b)vs models started from
2-4Hz extrapolated low-frequency data.
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Figure 12: The inverted (a)vp and (b)vs models started from
2-4Hz true low-frequency data..
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Figure 13: The inverted (a)vp and (b)vs using only the band-
limited data.
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