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Extrapolated full-waveform inversion with deep learning

Hongyu Sun1 and Laurent Demanet1

ABSTRACT

The lack of low-frequency information and a good initial
model can seriously affect the success of full-waveform inver-
sion (FWI), due to the inherent cycle skipping problem. Com-
putational low-frequency extrapolation is in principle the most
direct way to address this issue. By considering bandwidth ex-
tension as a regression problem in machine learning, we have
adopted an architecture of convolutional neural network (CNN)
to automatically extrapolate the missing low frequencies. The
band-limited recordings are the inputs of the CNN, and, in
our numerical experiments, a neural network trained from
enough samples can predict a reasonable approximation to
the seismograms in the unobserved low-frequency band, in
phase and in amplitude. The numerical experiments considered
are set up on simulated P-wave data. In extrapolated FWI

(EFWI), the low-wavenumber components of the model are de-
termined from the extrapolated low frequencies, before proceed-
ing with a frequency sweep of the band-limited data. The
introduced deep-learning method of low-frequency extrapola-
tion shows adequate generalizability for the initialization step
of EFWI. Numerical examples show that the neural network
trained on several submodels of the Marmousi model is able
to predict the low frequencies for the BP 2004 benchmark
model. Additionally, the neural network can robustly process
seismic data with uncertainties due to the existence of random
noise, a poorly known source wavelet, and a different finite-dif-
ference scheme in the forward modeling operator. Finally, this
approach is not subject to strong assumptions on signals or
velocity models of other methods for bandwidth extension
and seems to offer a tantalizing solution to the problem of prop-
erly initializing FWI.

INTRODUCTION

Full-waveform inversion (FWI) requires low-frequency data to
avoid convergence to a local minimum in cases in which the initial
models miss a reasonable representation of the complex structure.
However, because of the acquisition limitation in seismic process-
ing, the input data for seismic inversion are typically limited to a
band above 3 Hz. With assumptions and approximations to make
inferences from tractable but simplified models, geophysicists have
started reconstructing the reflectivity spectrum from the band-lim-
ited records by signal processing methods. The L1-norm minimiza-
tion (Levy and Fullagar, 1981; Oldenburg et al., 1983),
autoregressive modeling (Walker and Ulrych, 1983), and minimum
entropy reconstruction (Sacchi et al., 1994) methods have been de-
veloped to recover the isolated spikes of seismic recordings. Re-
cently, bandwidth extension to the low-frequency band has
attracted the attention of many people in terms of FWI. For exam-

ple, they recover the low frequencies by the envelope of the signal
(Wu et al., 2014; Hu et al., 2017) or the inversion of the reflectivity
series and convolution with the broadband source wavelet (Wang
and Herrmann, 2016; Zhang et al., 2017). However, the low
frequencies recovered by these methods are still far from the true
low-frequency data. Li and Demanet (2016) attempt to extrapolate
the true low-frequency data based on the phase-tracking method (Li
and Demanet, 2015). Unlike the explicit parameterization of phases
and amplitudes of atomic events, here we propose an approach that
can automatically process the raw band-limited records. The deep
neural network (DNN) is trained to automatically recover the miss-
ing low frequencies from the input band-limited data.
Because of the state-of-the-art performance of machine learning in

many fields, geophysicists have begun adapting such ideas in seismic
processing and interpretation (Chen et al., 2017; Guitton et al., 2017;
Xiong et al., 2018). By learning the probability of salt geobodies
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being present at any location in a seismic image, Lewis and Vigh
(2017) investigate convolutional neural network (CNN) to incorpo-
rate the long-wavelength features of the model in the regularization
term. Richardson (2018) constructs FWI as recurrent neural net-
works. Araya-Polo et al. (2018), Wu et al. (2018), and Li et al.
(2019) produce layered velocity models from shot gathers with DNN.
Like these authors and many others, we have selected DNN for

low-frequency extrapolation due to the increasing community agree-
ment in favor of this method as a reasonable surrogate for a
physics-based process (Grzeszczuk et al., 1998; De et al., 2011;
Araya-Polo et al., 2017). The universal approximation theorem also
indicates that the neural networks can be used to replicate any func-
tion up to our desired accuracy if the DNN has sufficient hidden
layers and nodes (Hornik et al., 1989). Although training is therefore
expected to succeed arbitrarily well, only empirical evidence cur-
rently exists for the often-favorable performance of testing a network
out of sample. Furthermore, we choose to focus on DNN with a con-
volutional structure, that is, CNN. The idea behind CNN is to mine
the hidden correlations among different frequency components.
In the case of bandwidth extension, the relevant data are the

amplitudes and phases of seismic waves, which are dictated by the
physics of wave propagation. For training, large volumes of
synthetic shot gathers are generated from different models, in a wide
band that includes the low frequencies, and the network’s param-
eters are fit to regress the low frequencies of those data from the
high frequencies. The window to split the spectrum to low- and
high-frequency band should be smooth in the frequency domain.
For testing, band-limited (and not otherwise processed) data from
a new geophysical scenario are used as input of the network, and the
network generates a prediction of the low frequencies. In the syn-
thetic case, validation of the testing step is possible by computing
those low frequencies directly from the wave solver.
By now, neural networks have shown their ability to fulfill the

task of low-frequency extrapolation. Ovcharenko et al. (2017,
2018, 2019a, 2019b) train neural networks on data generated for
random velocity models (Kazei et al., 2019) to predict a single
low-frequency from multiple high-frequency data. They treat each
shot gather in the frequency domain as a digital image for feature
detection and thus require a large number of numerical simulations
to synthesize the training data. Jin et al. (2018) and Hu et al. (2019)
use a deep inception-based convolutional network to synthesize
data at multiple low frequencies. The input of their neural network
contains the phase information of the true low frequencies by
leveraging the beat tone data (Hu, 2014). In contrast, we design an
architecture of CNN to directly handle the band-limited data in the
time domain. The proposed architecture can flexibly import one
trace or multiple traces of the band-limited shot gather to predict
the data in a low-frequency band with sufficient accuracy that it
can be used for FWI.
The limitations of neural networks for such signal processing

tasks, however, are (1) the unreliability of the prediction when
the training set is insufficient and (2) the absence of a physical in-
terpretation for the operations performed by the network. In addi-
tion, no theory can currently explain the generalizability of a deep
network, that is, the ability to perform nearly as well on testing as on
training in a broad range of cases. Even so, the numerical examples
indicate that the proposed architecture of CNN enjoys sufficient
generalizability to extrapolate the low frequencies of unknown sub-
surface structures, in a range of numerical experiments.

We demonstrate the reliability of the extrapolated low frequen-
cies to seed frequency-sweep FWI on the Marmousi model and the
BP 2004 benchmark model. Two precautions are taken to ensure
that trivial deconvolution of a noiseless record (by division by the
high-frequency wavelet in the frequency domain) is not an option:
(1) add noise to the testing records and (2) for testing, choose a hard
band-pass wavelet taken as zero in the low-frequency band. In one
numerical experiment involving band-limited data of greater than
0.6 Hz from the BP 2004 model, the inversion results indicate that
the predicted low frequencies are adequate to initialize conventional
FWI from an uninformative initial model, so that it does not suffer
from the otherwise-inherent cycle-skipping at 0.6 Hz. Additionally,
the proposed neural network has acceptable robustness to uncertain-
ties due to the existence of noise, a poorly known source wavelet,
and different finite-difference (FD) schemes in the forward model-
ing operator.
This paper is organized as follows. We start by formulating band-

width extension as a regression problem in machine learning. Next,
we introduce the general workflow to predict the low-frequency
recordings with CNN. We then study the generalizability and the
stability of the proposed architecture in more complex situations.
Last, we illustrate the reliability of the extrapolated low frequencies
to initialize FWI and analyze the limitations of this method.

DEEP LEARNING

A neural network defines a mapping y ¼ fðx;wÞ and learns the
value of the parameters w that result in a good fit between x and y.
DNNs are typically represented by composing together many differ-
ent functions to find complex nonlinear relationships. The chain
structures are the most common structures in DNNs (Goodfellow
et al., 2016):

y ¼ fðx;wÞ ¼ fLð : : : f2ðf1ðxÞÞÞ; (1)

where f1; f2, and fL are the first, the second, and the Lth layer of
the network (with their own parameters omitted in this notation).
Each fj consists of three operations taken in succession: an affine
(linear plus constant) transformation, a batch normalization (multi-
plication by a scalar chosen adaptively), and the component-wise
application of a nonlinear activation function. It is the nonlinearity
of the activation function that enables the neural network to be a
universal function approximator. The overall length L of the chain
gives the depth of the deep learning model. The final layer is the
output layer, which defines the size and type of the output data. The
training sets specify directly what the output layer must do at each
point x and constrain but do not specify the behavior of the other
hidden layers. Rectified activation units are essential for the recent
success of DNNs because they can accelerate convergence of the
training procedure. Our numerical experiments show that, for band-
width extension, the parametric rectified linear unit (PReLU) (He
et al., 2015) works better than the rectified linear unit (ReLU).
The formula for PReLU is

gðα; yÞ ¼
�

αy; if y < 0

y; if y ≥ 0
; (2)

where α is also a learnt parameter and would be adaptively updated
for each rectifier during training.
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Unlike the classification problem that trains the DNNs to produce
discrete labels, the regression problem trains the DNNs for the pre-
diction of continuous-valued outputs. It evaluates the performance
of the model by means of the mean-squared error (MSE) of the pre-
dicted outputs fðxi;wÞ versus the actual outputs yi:

JðwÞ ¼ 1

m

Xm
i¼1

Lðyi; fðxi;wÞÞ; (3)

where the loss L is the squared error between the true low frequen-
cies and the estimated outputs of the neural networks. The cost
function J is here minimized overw by a stochastic gradient descent
(SGD) algorithm, where each gradient is computed from a mini-
batch, that is, a subset in a disjoint randomized partition of the train-
ing set. Each gradient evaluation is called an iteration, whereas the
full pass of the training algorithm over the entire training set using
minibatches is an epoch. The learning rate η (step size) is a key
parameter for deep learning and must be fine-tuned. The gradients
∂JðwtÞ∕∂w of the neural networks are calculated by the backpro-
pagation method (Goodfellow et al., 2016).
CNN is an overwhelmingly popular architecture of DNN to ex-

tract spatial features in image processing, and it is the choice that we
make in this paper. In this case, the matrix-vector multiplication in
each fj is a convolution. In addition, imposing local connections
and weight sharing can exploit the local correlation and global fea-
tures of the input image. CNNs are normally designed to deal with
the image classification problem. For bandwidth extension, the data
to be learned are the time-domain seismic signals, so we directly
consider the amplitude at each sampling point as the pixel value
image to be used as input of the CNN.
Recall that CNN involves stacks of a convolutional layer, fol-

lowed by a PReLU layer, and a batch normalization layer. The filter
number in each convolutional layer determines the dimensionality
of the feature map or the channel of its output. Each output channel
of the convolutional layer is obtained by convolving the channel of
the previous layer with one filter, summing and adding a bias term.
The batch normalization layer can speed up training of CNNs and
reduce the sensitivity to network initialization by normalizing each
input channel across a minibatch (Ioffe and Szegedy, 2015). We also
leave the pooling layer out, although it is typi-
cally used in the conventional architecture
of CNNs.
An essential hyperparameter for low-frequency

extrapolation with deep learning is the receptive
field of a neuron. It is the local region of the input
volume that affects the response of this neuron —
otherwise known as the domain of dependence.
The spatial extent of this connectivity is related
to the filter size. Unlike the small filter size com-
monly used in the image classification problem,
we directly use a large filter in the convolutional
layer to increase the receptive field of the CNN
quickly with depth. The large filter size gives
the neural network enough freedom to reconstruct
the long-wavelength information.
The architecture of our neural network (Fig-

ure 1) is a feed-forward stack of five sequential
combinations of the convolution, PReLU and
batch normalization layers, followed by one fully
connected layer that outputs continuous-valued

amplitude of the time-domain signal in the low-frequency band.
The first convolutional layer filters the nt × 1 input time series with
128 kernels of size 200 × 1 × 1 where nt is the number of time
steps. The second convolutional layer has 64 kernels of size 200 ×
1 × 128 connected to the normalized outputs of the first convolu-
tional layer. The third convolutional layer has 128 kernels of size
200 × 1 × 64. The fourth convolutional layer has 64 kernels of size
200 × 1 × 128, and the fifth convolutional layer has 32 kernels of
size 200 × 1 × 64. The last layer is fully connected, taking features
from the last convolutional layer as input in a vector form of length
nt × 32. The stride of the convolution is one, and zero-padding is
used to make the output length of each convolution layer the same
as its input. Additionally, a dropout layer (Srivastava et al., 2014)
with a probability of 50% is added after the first convolution layer to
reduce the generalization error.
We use CNN in the context of supervised learning, that is,

inference of yi from xi. We need to first train the CNN from a large
number of samples ðxi; yiÞ to determine the coefficients of the
network, and then we use the network for testing on new xi. In
statistical learning theory, the generalization error is the difference
between the expected and empirical error, where the expectation
runs over a continuous probability distribution on the xi. This gen-
eralization error can be approximated by the difference between the
errors on the training and test sets.
The object of this paper is that xi can be taken to be seismograms

band limited to the high frequencies and yi can be the same seismo-
grams in the low-frequency band. Generating training samples
means collecting or synthesizing seismogram data from a variety of
geophysical models, which enter as space-varying elastic coeffi-
cients in a wave equation. For the purpose of good generalization
(a small generalization error), the models used to create the large
training sets should be able to represent many subsurface structures,
including different types of reflectors and diffractors, so we can find
a representative set of parameters to handle data from different sce-
narios or regions. The performance of the neural network is sensi-
tive to the architecture and the hyperparameters, so we must design
them carefully. Next, we illustrate the specific choice of hyperpara-
meters for bandwidth extension, along with numerical examples
involving synthetic data from community models.

Figure 1. An illustration of the architecture of our CNN to extrapolate the low-fre-
quency data from the band-limited data in the time domain trace by trace. The archi-
tecture is a feed-forward stack of five sequential combinations of the convolution,
PReLU, and batch normalization layers, followed by one fully connected layer that out-
puts continuous-valued amplitude of the time-domain signal in the low-frequency band.
The network’s input is a 1D band-limited recording of length nt where nt is the number
of time steps. The size and number of filters are labeled on the top of each convolutional
layer.
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NUMERICAL EXAMPLES

In this section, we demonstrate the reliability of extrapolated FWI
with CNN (EFWI-CNN) in three parts. In the first part, we show
CNN’s ability to extrapolate low-frequency (0.1–5.0 Hz) from
band-limited data (5.0–20.0 Hz) on the Marmousi model (Figure 2).
In the second part, we verify the robustness of the method with un-
certainties in the seismic data due to the existence of noise, a differ-
ent finite difference scheme, and a poorly known source wavelet. In
the last part, we perform EFWI-CNN on the Marmousi model and
the BP 2004 benchmark model (Billette and Brandsberg-Dahl,
2005), by first using the extrapolated low frequencies to synthesize
the low-wavenumber background velocity model. Then, we com-
pare the inversion results with the band-limited data in three cases
that respectively start FWI from an uninformed initial model, the
low-wavenumber background model created from the extrapolated
low frequencies, and the low-wavenumber background model cre-
ated from the true low frequencies.

Low-frequency extrapolation

Following our previous work (Sun and Demanet, 2018, 2019),
the true unknown velocity model for FWI is referred to as the test
model because it is used to collect the test data set in deep learning.
To collect the training data set, we create training models by ran-
domly selecting nine parts of the Marmousi model (Figure 2) with a
different structure but the same number of grid points 166 × 461.
We also downsample the original model to 166 × 461 pixels as
the test model. We find that the randomized models produced in
this manner are realistic enough to demonstrate the generalization
of the neural network if the structures of the submodels are diver-
sified enough.
In this example, we have the following processing steps to collect

each sample (i.e., a shot record) in the training and test data sets.

• The acquisition geometry of forward modeling on each
model is the same. It consists of 30 sources and 461 receivers

evenly spaced at the surface. We consider
each time series or trace as one sample in
the data set, so we have 124,470 training
samples and 13,830 test samples for the
test model in total.

• We use a fourth order in space and second
order in time FD modeling method with
PML to solve the 2D acoustic wave equa-
tion in the time domain, to generate the
synthetic shot gathers of the training
and test data sets. The sampling interval
and the total recording time are 2 ms
and 5 s, respectively.

• We use a Ricker wavelet with dominant
frequency of 7 Hz to synthesize the
full-band seismic recordings. Then, the
data below 5 Hz and above 5 Hz are split
to synthesize the output and input of the
neural networks, respectively (Figure 3).
The low- and high-frequency data are
obtained by a sharp windowing of the
same trace.

In this example, we train the network with the
Adam optimizer and use a minibatch of 64 sam-
ples at each iteration (implemented with Tensor-
flow [Abadi et al., 2015] and Keras [Chollet,
2015]). The initial learning rate and forgetting
rate of the Adam are the same as the original pa-
per (Kingma and Ba, 2014). The initial value of
the bias is zero. The weight initialization is via
the Glorot uniform initializer (Glorot and Ben-
gio, 2010). It randomly initializes the weights
from a truncated normal distribution centered
on zero with the standard deviationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2∕n1 þ n2

p
where n1 and n2 are the numbers

of input and output units in the weight tensor,
respectively.
The training process of the 20 epochs is shown

in Figure 4. The training and test losses decay
with the training steps, which indicates that our
neural network is not overfitting. We test the per-
formance of the neural networks by feeding the
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Figure 2. The nine training models randomly extracted from the Marmousi velocity
model to collect the training data set. The test models are the Marmousi model and
the BP 2004 benchmark model. A water layer with 300 m depth is added to the top
of these training models and Marmousi model. We use the same training models to
extrapolate the low frequencies on both test models.
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Figure 3. (a) The Ricker wavelet with 7 Hz dominant and (b) its amplitude spectrum.
(c) The high-frequency wavelet band-passed from (a) and (d) its amplitude spectrum.
(e) The low-frequency wavelet band-passed from (a) and (f) its amplitude spectrum.
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band-limited data in the test set into the pretrained neural networks
and obtaining the extrapolated low frequencies on the Marmousi
model. Figure 5 compares the shot gather between the band-limited
data (5.0–20.0 Hz), extrapolated, and true low frequencies
(0.1–5.0 Hz) where the source is located at the horizontal distance
x ¼ 2.94 km on the Marmousi model. The extrapolated results in
Figure 5b show that the proposed neural network can accurately
predict the recordings in the low-frequency band, which are totally
missing before the test. Figure 6 compares two individual seismo-
grams in Figure 5b where the receivers are located at the horizontal
distances of x ¼ 2.82 km and x ¼ 2.92 km, respectively. The
extrapolated low-frequency data match the true recordings well.
Then, we combine the extrapolated low frequencies with the band-
limited data and compare the amplitude spectrum of the full-band
data with the extrapolated and true low frequencies. The amplitude
and phase spectrum comparison of the single trace where the receiver
is located at x ¼ 2.92 km (Figure 7) clearly shows that the neural
networks can capture the relationship between low- and high-
frequency components constrained by the wave equation.
Figure 8 shows the low-frequency extrapolation without direct

waves. The direct waves are muted from the full-band shot gathers
with a smooth time window before splitting into the band-limited
recordings and the low frequencies. The low frequencies of reflec-
tions are recovered without the existence of the direct waves. There-
fore, the neural network is robust with the presence of muting.

Uncertainty analysis

With a view toward dealing with complex field data, we inves-
tigate the stability of the neural network’s predictive performance
under three kinds of discrepancies, or uncertainties, between the
training and the test: additive noise, different FD operator in the
forward modeling, and different source wavelet. In each case, we
compare the extrapolation accuracy with the reference in Figure 5,
where training and testing are set up the same way (noiseless band-
limited data, finite difference operator with second order in time and
fourth order in space, and the Ricker wavelet with a 7 Hz dominant
frequency). The root-mean-square error (rms error) between data
with extrapolated and true low frequencies of the 30 shot gathers
in Figure 5 is 2.1304 × 10−4.

0 5 10 15 20
Epoch

0

5

10

15

Lo
ss

10–2

Training
Test

Figure 4. The learning curves. Training and test losses decay with
the training steps.

a)

b)

c)

Figure 5. The extrapolation result on the Marmousi model: com-
parison among the (a) band-limited recordings (5.0–20.0 Hz),
(b) predicted, and (c) true low-frequency recordings (0.1–5.0 Hz).
The band-limited data in (a) are the inputs of CNNs to predict the
low frequencies in (b).
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In the first case, the neural network is expected to extrapolate the
low frequencies from the noisy band-limited data. We add 20% ad-
ditive Gaussian noise to the band-limited data in the test data set and
30% additive Gaussian noise to the band-limited data in the training
data set. The low frequencies in the training set are noiseless as
before. Even though noise will disturb the neural network to find
the correct mapping between the band-limited data with their low
frequencies, Figure 9 shows that the proposed neural network can
still successfully extrapolate the low frequencies of the main reflec-
tions. The rms error between data with extrapolated and true low
frequencies of the 30 shot gathers in Figure 9 is 2.4156 × 10−4.
The neural network is able to perform extrapolation as well as
denoising. Incidentally, we make the (unsurprising) observation that
CNN has the potential for the denoising of seismic data.
Another challenge of FWI is that the observed and calculated

data can come from different wave-propagation schemes. For exam-
ple, under the control of different numerical dispersion curves, the
phase velocity would have different behavior if we used different
finite difference operators to simulate the observed and calculated
data. Therefore, it is necessary to study the influence of different
discretization, or other details of the simulation, on the accuracy
of low-frequency extrapolation. In our case, the shot gathers in
the test data set are simulated with a sixth-order spatial FD operator,
but the neural network is trained on the samples simulated with a
fourth-order spatial FD operator. The extrapolation result in Fig-
ure 10b shows that the neural network trained on the fourth-order
operator is able to extrapolate the low frequencies of the band-
limited data collected with the sixth-order operator. In this case,

the rms error between data with extrapolated (Figure 10b) and true
(Figure 10c) low frequencies of the 30 shot gathers is
2.2248 × 10−4. The neural network appears to be stable with respect
to mild modifications to the forward modeling operator, at least in
the examples tried.
Another uncertainty is the unknown source wavelet. To check the

extrapolation capability of the neural network in the context of data
excited by an unknown source wavelet, we train the neural network
with a 7 Hz Ricker wavelet but we test it with an Ormsby wavelet.
The four corner frequencies of the Ormsby wavelet are 0.2, 1.5, 8,
and 14 Hz, respectively. Figure 11 shows that the neural network
trained on the data from the 7 Hz Ricker wavelet source wavelet is
able to extrapolate the data synthesized with the Ormsby source
wavelet. However, the recovery of the amplitude is much poorer
than the phase. The rms error between data with extrapolated
and true low frequencies of the 30 shot gathers in Figure 11 is in-
creased to 1.1717 × 10−3. The commonplace issue of the source
wavelet being unknown or poorly known in FWI has seemingly
little effect on the performance of the proposed neural network
to extrapolate the phase of low-frequency data, at least in the ex-
amples tried.
Even though all of the uncertain factors hurt the accuracy of

extrapolated low frequencies to some extent, the CNN’s prediction
has a degree of robustness that surprised us. All of the extrapolation
results in the above numerical examples can be further improved by
increasing the diversity of the training data set because subjecting
the network to a broader range of scenarios can fundamentally re-
duce the generalization error of the deep learning predictor (e.g., we
can simulate the training data set with multiple kinds of source
wavelets and FD operators).
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Figure 6. The extrapolation result on the Marmousi model: com-
parison among the predicted (the red line), the true (the blue dashed
line) recording in the low-frequency band (0.1–5.0 Hz), and the
band-limited recording (the black line) (5.0–20.0 Hz) at the hori-
zontal distance (a and b) x ¼ 2.82 km and (c and d) x ¼ 2.92 km.
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Figure 7. The extrapolation result on the Marmousi model: com-
parison of (a) the amplitude spectrum and (b) the phase spectrum
at x ¼ 2.92 km among the band-limited recording (5.0–20.0 Hz),
the recording (0.1–20.0 Hz) with the true and predicted low
frequencies (0.1–5.0 Hz).
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Extrapolated FWI: Marmousi model

In this example, we construct the low-wave-
number velocity model for the Marmousi model,
by leveraging the extrapolated low-frequency data
(Figure 5b) to solve the cycle-skipping problem
for FWI on the band-limited data. The objective
function of the inversion is formulated as the
least-squares misfit between the observed and cal-
culated data in the time domain. Starting from
an initial model in Figure 12b, we use the L-BFGS
(a limited-memory variant of the quasi-Newton
BFGS method named after its discoverers Broy-
den, Fletcher, Goldfarb, and Shanno; see Nocedal
and Wright, 2006) optimization method to update
the model gradually (for the implementation in
this paper, see Hewett and Demanet, 2013). To
help the gradient-based iterative inversion method avoid falling into
local minima, we also perform the inversion from the lowest fre-
quency that the data contained to successively higher frequencies.
Additionally, an accurate wavelet is assumed to be known for FWI.
With this inversion scheme, we test the reliability of the extrapo-

lated low frequencies (Figure 5b) on the Marmousi model (Fig-
ure 12a). The velocity structure of the initial model is far from
the true model. The true model was not used in the training stage.
The acquisition geometry and source wavelet are the same as in the
example in the previous section. The observed data below 5.0 Hz
are totally missing. Therefore, we first use the band-limited data in
5.0–20.0 Hz to recover the low frequencies in 0.1–5.0 Hz and then
use the low frequencies to invert the low-wavenumber velocity
model for the band-limited FWI. Figure 13 compares the inverted
models from FWI using the true and extrapolated 0.5–3.0 Hz low-
frequency data. Because the low-frequency extrapolation accuracy
of reflections after 4.0 s is limited (as seen in Figure 5b), the low-
wavenumber model constructed from the extrapolated low frequen-
cies has lower resolution in the deeper section compared with that
from the true low frequencies. However, both models capture the
low-wavenumber information of the Marmousi model. These mod-
els are used as the starting models for FWI on the band-limited data.
Figure 14 compares the inverted models from FWI using the

band-limited data (5–15 Hz) with different starting models. The re-
sulting model in Figure 14b starts from the low-wavenumber model
constructed from the extrapolated low frequencies (Figure 13b),
which is almost the same as the one from the true low frequencies
(Figure 14a). Because the highest frequency component in the
low-frequency band is 3 Hz when we invert the starting model, both
inversion results have a slight cycle-skipping phenomenon. How-
ever, Figure 14c performs band-limited FWI with the linear initial
model and it shows a much more pronounced effect of cycle-
skipping. We cannot find much meaningful information about the
subsurface structure if the band-limited inversion starts at 5 Hz from
a linear initial model (Figure 12b).
Figure 15 compares the velocity profile among the resulting

models in Figure 14 (the initial and true velocity models) at the hori-
zontal locations of x ¼ 3 km, x ¼ 5 km, and x ¼ 7 km. The final
inversion result started from the extrapolated low frequencies gives
us almost the same model as the true low frequencies, which illus-
trates that the extrapolated low-frequency data are reliable enough
to provide an adequate low-wavenumber velocity model. However,
both inversion workflows have difficulty in the recovery of velocity

a)

b)

Figure 9. Noise robustness: comparison between the (a) band-lim-
ited recordings (5.0–20.0 Hz) and (b) predicted low-frequency re-
cordings (0.1–5.0 Hz) on the Marmousi model. We add 20% additive
Gaussian noise to the band-limited data in the test data set and 30%
additive Gaussian noise to the band-limited data in the training data
set. Even though noise will disturb the neural network find the correct
mapping between the band-limited data with their low frequencies,
the proposed neural network can still extrapolate the low frequencies
of the main reflections. The neural network is able to perform
extrapolation as well as denoising.
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Figure 8. Low-frequency extrapolation without direct waves: comparison among the
(a) band-limited recordings (5.0–20.0 Hz), (b) predicted, and (c) true low-frequency record-
ings (0.1–5.0 Hz) on the Marmousi model. The direct waves are muted from the full-band
shot gathers with a smooth time window before splitting into the band-limited recordings
and the low frequencies. The extrapolation is robust with the presence of muting.
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a)

b)

c)

Figure 11. Unknown source wavelet robustness: comparison among
the (a) band-limited recordings (5.0–20.0 Hz), (b) predicted, and
(c) true low-frequency recordings (0.1–5.0 Hz) on the Marmousi
model. In this case, we use an Ormsby wavelet with the four corner
frequencies 0.2, 1.5, 8.0, and 14.0 Hz to synthesize the output and
input of neural network for samples in the test data set. The result in
(b) shows that the neural network trained on the data from 7 Hz
Ricker wavelet is able to extrapolate the data synthesize with an
Ormsby wavelet. However, the recovery of the amplitude is poorer
than the phase.

a)

b)

c)

Figure 10. Forward modeling operator robustness: comparison
among the (a) band-limited recordings (5.0–20.0 Hz), (b) predicted,
and (c) true low-frequency recordings (0.1–5.0 Hz) on the Marmousi
model. The shot gather in the test data set is simulated with the sixth-
order operator, whereas the neural network is trained with the sam-
ples simulated with the fourth-order operator. The extrapolation result
in (b) shows that the neural network trained on the fourth-order FD
operator can extrapolate the low frequencies of the band-limited data
coming from the sixth-order operator. The neural network is stable
with the variance of the forward modeling operator.
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structures below 2 km depth. Because the velocity model in
Figure 14c has fallen into a local minimum, the inversion cannot
converge to the true model in the subsequent iterations. The inver-
sion results can be further improved by a multiscale FWI method
(Bunks et al., 1995) with a frequency band selection method (Sirgue
and Pratt, 2004).

Extrapolated FWI: BP model

In deep learning, it is essential to estimate the
generalization error of the proposed neural net-
work for understanding its performance. Clearly,
the intent is not to compute the generalization
error exactly because it involves an expectation
over an unspecified probability distribution.
Nevertheless, we can access the test error in
the framework of synthetic shot gathers; hence,
we can use the test error minus the training error
as a good proxy for the generalization error. For
the purpose of assessing whether the network can
truly generalize “out of sample” (when the train-
ing and testing geophysical models are very dif-
ferent), we train it with the samples collected
from the submodels of Marmousi, but we test
it on the BP 2004 benchmark model (Figure 16).
With the extrapolated low-frequency data pre-
dicted by the neural network trained on the sub-
models of Marmousi, we perform the EFWI-CNN
on the BP 2004 benchmark model (Figure 16).
To reduce the computation burden, we down-

sample the BP 2004 benchmark model to
80 × 450 grid points with a grid interval of 150 m.
It is challenging for FWI to use only the band-lim-
ited data to invert the shallow salt overhangs and
the salt body with steeply dipping flanks in the BP
model. Numerical examples show that, starting
from very erroneous initial model (shown later),
the highest starting frequency to avoid cycle-skip-
ping on this model is 0.3 Hz. Therefore, we should
extrapolate the band-limited data to at least 0.3 Hz
to invert the BP model successfully.
In this example, we use a 7 Hz Ricker wavelet

as the source to simulate the full band seismic
records on the training models (submodels of
Marmousi) and the test model (BP model). Here,
the same training models with 166 × 461 pixels
from Marmousi are used but the grid spacing is
increased to 150 m to be consistent with the test
model (the BP model). The sampling interval and
the total recording time are 5 ms and 10 s, respec-
tively. To collect the input of the CNN, a high-pass
filter where the low-frequency band (0.1–0.5 Hz)
is exactly zero is applied to the full-band seismic
data. The band-limited data (0.6–20.0 Hz) are
fed into the proposed CNN model to extrapolate
the low-frequency data in 0.1–0.5 Hz trace by
trace.
Figure 17 shows the learning curves of training

process across the 20 epochs. Figure 18 compares
the extrapolation result of one shot gather on the

BP model where the shot is located at 31.95 km. The neural network
can recover the low frequencies of reflections with some degree of
accuracy. Even though the information contained in the data collected
on Marmousi is physically unlike that of the salt dome model, the
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Figure 12. (a) The Marmousi model (the true model in FWI and the test model in deep
learning) and (b) the initial model for FWI.
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Figure 13. Comparison between the inverted low-wavenumber models using the (a) true
and (b) extrapolated 0.5–3.0 Hz low frequencies. The model constructed from the
extrapolated low frequencies has lower resolution in the deeper section compared to
the model from the true low frequencies because the extrapolation accuracy of the
deeper reflections is poor. However, both models capture the low-wavenumber infor-
mation of the Marmousi model.
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Figure 14. Comparison among the inverted models from FWI using the band-limited
data (5.0–15.0 Hz). (a) The resulting model is started from the low-wavenumber velocity
model constructed with the true low frequencies in Figure 13a. (b) The resulting model
is started from the low-wavenumber velocity model constructed with the extrapolated
low frequencies in Figure 13b. (c) The resulting model is started from the initial model in
Figure 12b.
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pretrained neural network can successfully find an
approximation of their low frequencies based on
the band-limited inputs.
The extrapolated low-frequency data are used

to invert the low-wavenumber velocity model
with the conventional FWI method. We observe
that the accuracy of extrapolated low frequencies
decreases as the offset increases, so we limit the
maximum offset to 12 km. Starting from the ini-
tial model (Figure 19a), Figure 19b and 19c
shows the low-wavenumber inverted models us-
ing 0.3 Hz extrapolated data and 0.3 Hz true data,
respectively. Compared with the initial model,
the resulting model using the 0.3 Hz extrapolated
data reveals the positions of the high- and low-
velocity anomalies, which is almost the same as
that of true data. The low-wavenumber back-
ground velocity models can initialize the fre-
quency-sweep FWI in the right basin of
attraction.
Figure 20 compares the inverted models from

FWI using 0.6–2.4 Hz band-limited data, starting
from the respective low-wavenumber models in
the previous figure. In Figure 20a, the resulting
model starts from the original initial model. In
Figure 20b, the resulting model starts from the

inverted low-wavenumber velocity model using 0.3 Hz extrapolated
data. In Figure 20c, the resulting model starts from the inverted low-
wavenumber velocity model using 0.3 Hz true data. With the low-
wavenumber velocity model, FWI can find the accurate velocity
boundaries by exploring band-limited data. However, the inversion
falls in a local minimum with only the band-limited data. The low
frequencies extrapolated with deep learning are reliable enough to
overcome the cycle-skipping problem on the BP model, even
though the training data set is ignorant of the particular subsurface
structure of BP — salt bodies. Therefore, the neural network ap-
proach has the potential to deal favorably with real field data.
So far, the experiments on BP 2004 have assumed that data are

available in a band starting at 0.6 Hz. We now study the perfor-
mance of EFWI-CNN when this band starts at a frequency higher
than 0.6 Hz. We still start the frequency-sweep FWI with 0.3 Hz
extrapolated data, and the highest frequency is still fixed at 2.4 Hz.
Figures 21 and 22 compare the conventional FWI and EFWI-CNN
results with data band limited above 0.9 and 1.2 Hz, respectively.
With the increase of the lowest frequency of band-limited data, Fig-
ure 23 compares the quality of the inverted models at each iteration
for FWI using full-band data, EFWI-CNN, and FWI using only the
band-limited data. The norm of the relative model error is used to
evaluate the model quality, as (Brossier et al., 2009)

mq ¼ 1

N

����minv −mtrue

mtrue

����
2

; (4)

where minv and mtrue are the inverted model and the true model, re-
spectively, and N denotes the number of grid point in the computa-
tional domain. The performance of EFWI-CNN of course decreases
with the increase of the lowest frequency of the band-limited data
because this leads to more extrapolated data involved in the fre-
quency-sweep FWI. The more iterations of FWI with the extrapo-
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Figure 15. Comparison of velocity profiles among the initial model (the black dashed
line), the true model (the black line), and the resulting models started from the low-wave-
number models constructed with extrapolated (the red line) and true (the blue dashed line)
low frequencies at the horizontal locations of (a) x ¼ 3 km, (b) x ¼ 5 km, and
(c) x ¼ 7 km.
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Figure 16. The 2004 BP benchmark velocity model used to collect
the test data set for studying the generalizability of the proposed neu-
ral network. This model is the true model in extrapolated FWI.
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lated data, the more errors the inverted model will have before ex-
ploring the true band-limited data. Overfitting of the unfavorable
extrapolated data makes the inversion worse after several iterations
with the extrapolated data. However, EFWI-CNN is still superior to
using FWI with only band-limited data. We observe that EFWI-CNN
with the current architecture still helps to reduce the inverted model
error on the BP model when the lowest available frequency is as high
as 1.2 Hz.
Finally, we encountered a puzzling numerical phenomenon: The

accuracy of the extrapolated data at the single frequency 0.3 Hz
depends very weakly on the band in which data are available,

whether it be [0.6, 20.0] Hz or [1.2, 20.0] Hz, for instance. As men-
tioned earlier, extrapolating data from 0.3 to 1.2 Hz, so as to be
useful for EFWI starting at 1.5 Hz, is the much tougher task.

DISCUSSIONS AND LIMITATIONS

The most important limitation of CNN for bandwidth extension is
the possibly large generalization error that can result from an incom-
plete training set or an architecture unable to predict well out of
sample. As a data-driven statistical optimization method, deep
learning requires a large number of samples (usually millions) to

become an effective predictor. Because the train-
ing data set in this example is small but the model
capacity (trainable parameters) is large, it is very
easy for the neural network to overfit, which seri-
ously deteriorates the extrapolation accuracy.
Therefore, in practice, it is standard to use regu-
larization or dropout, with only empirical evi-
dence that this addresses the overfitting problem.
In addition, the training time for deep learning

is highly related to the size of the data set and the
model capacity and, thus, is very demanding. To
speed up the training by reducing the number of
weights of the neural networks, we can downsam-
ple the inputs and outputs and then use band-lim-
ited interpolation method to recover the signal
after extrapolation.
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Figure 20. Comparison of the inverted models from FWI using
0.6–2.4 Hz band-limited data. (a) The resulting model starts from
the original initial model. (b) The resulting model starts from the
inverted low-wavenumber velocity model using 0.3 Hz extrapolated
data. (c) The resulting model starts from the inverted low-wavenum-
ber velocity model using 0.3 Hz true data.
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Figure 19. Comparison among (a) the initial model for FWI on the
BP model, the inverted low-wavenumber velocity models using
(b) 0.3 Hz extrapolated data, and (c) 0.3 Hz true data. The inversion
results in (b) and (c) are started from the initial model in (a).
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Figure 18. The extrapolation result on the BP model: comparison among the (a) band-
limited recordings (0.6–20.0 Hz), (b) predicted, and (c) true low-frequency recordings
(0.1–0.5 Hz). The neural network trained on the Marmousi submodels can recover the
low frequencies synthesized from the BP model, which illustrates that the proposed
neural network can generalize well.
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Another limitation of deep learning is due to the unbalanced data.
The energy of the direct wave is very strong compared with that of
the reflected waves, which biases the neural networks toward fitting
the direct wave and contributing less to the reflected waves. There-
fore, the extrapolation accuracy of the reflected waves is not as good
as that of the primary wave in this example.
One limitation of trace-by-trace extrapolation is that the accumu-

lation of the predicted errors reduces the coherence of the event
across traces. Hence, multitrace extrapolation can alleviate this
problem to a certain degree by leveraging the spatial relationship

existing in the input. The design of the architecture in Figure 1
is flexible to import multiple traces as the input of the neural
network. To extrapolate the low-frequency signal of a single trace,
ntr traces in the neighborhood of the single trace have been used as
the input of the neural network. Then we only need to change the
size of the filter on the first convolutional layer from 200 × 1 × 1 to
200 × ntr × 1 and keep the rest the same. Figure 24 compares the
extrapolated low-frequency data (0.1–5.0 Hz) on the full-size Mar-
mousi model using one trace (ntr ¼ 1), five traces (ntr ¼ 5), and
seven traces (ntr ¼ 7) as the input of neural network. The predicted
low-frequency data using multiple-trace input show better coher-
ence along traces compared to that using trace-by-trace extrapola-
tion. Additionally, more numerical experiments show that multiple-
trace extrapolation helps to reduce the random noise but is unhelpful
to correlated noise.
Even though we are encouraged by the ability of a CNN to gen-

erate [0.1, 0.5] Hz data for the BP 2004 model, much work remains
to be done to be able to find the right architecture that will generate
data in broader frequency bands, for instance, in the [0.1, 1.4] Hz
band. Finding a suitable network architecture, hyperparameters, and
training schedule for such cases remains an important open prob-
lem. Other community models, and more realistic physics such as
elastic waves, are also left to be explored.
Finally, the influence of different physics between the training

and test data set is left to be studied. This point is important for
the application to field data. Even though we show the robustness
of the proposed method in dealing with uncertainty due to random
noise, a different forward modeling operator and a poorly known
source wavelet, more stable neural network, and training strategies
are yet to be proposed to overcome the challenges of field data, such
as strong correlated and uncorrelated noise, complex and unknown
wavelet shot by shot, viscoelasticity, and anisotropy.
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Figure 21. Comparison of the inverted models from FWI using
0.9–2.4 Hz band-limited data. (a) The resulting model starts from
the original initial model. (b) The resulting model starts from the
inverted low-wavenumber velocity model using 0.3 and 0.6 Hz
extrapolated data. The extrapolated data below 0.9 Hz are recovered
by 0.9–20.0 Hz band-limited data.
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Figure 22. Comparison of the inverted models from FWI using
1.2–2.4 Hz band-limited data. (a) The resulting model starts from
the original initial model. (b) The resulting model starts from the
inverted low-wavenumber velocity model using 0.3, 0.6, and 0.9 Hz
extrapolated data. The extrapolated data below 1.2 Hz are recovered
by 1.2–20.0 Hz band-limited data.
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Figure 23. Comparison of the quality of the inverted models at each
iteration for FWI using full band data (the black line), EFWI-CNN
(the red line), and FWI using only band-limited data (the blue line).
f donates the lowest frequency of the band-limited data. The high-
est frequency of inversion is fixed at 2.4 Hz. The performance of
EFWI-CNN decreases with the increase of the lowest frequency of
the band-limited data. However, compared to FWI using only band-
limited data, EFWI-CNN improves the quality of the inverted model
very well.
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CONCLUSION

In this paper, deep learning is applied to the challenging band-
width extension problem that is essential for FWI. We formulate
bandwidth extension as a regression problem in machine learning
and propose an end-to-end trainable model for low-frequency
extrapolation. Without preprocessing on the band-limited data and
postprocessing on the extrapolated low frequencies, CNN some-
times have the ability to recover the low frequencies of unknown
subsurface structure that are completely missing at the training
stage. The extrapolated low-frequency data can be reliable to invert
the low-wavenumber velocity model for initializing FWI on the
band-limited data without cycle-skipping. Even though there is
freedom in choosing the architectural parameters of the DNN, mak-
ing the CNN have a large receptive field is necessary for low-
frequency extrapolation. The extrapolation accuracy can be further
modified by adjusting the architecture and hyperparameters of the
neural networks depending on the characteristics of the band-lim-
ited data.
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