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SUMMARY

Computational low frequency extrapolation is in principle the
most direct way to address the cycle skipping problem in full
waveform inversion (FWI). We propose a method of extrapo-
lated full waveform inversion (EFWI), where FWI is allowed
to make use of data augmented by increasing its frequency
band with a convolutional neural network (CNN). In extrap-
olated FWI with CNN (EFWI-CNN), the low-wavenumber
components of the model are determined from the extrapolated
low frequencies, before proceeding with a frequency sweep of
the bandlimited data. The proposed deep-learning method of
low-frequency extrapolation shows adequate generalizability
for the initialization step of EFWI. Numerical examples show
that the neural network trained on several submodels of the
Marmousi model is able to predict the low frequencies for the
BP 2004 benchmark model. Additionally, the neural network
can robustly process seismic data with uncertainties due to
the existence of noise, unknown source wavelet, and different
finite-difference scheme in the forward modeling operator.

INTRODUCTION

It has been recognized that FWI can be a good method to in-
vert for the subsurface structure with high resolution (Virieux
and Operto, 2009). However, the missing low frequencies are
probably the sole reason why the inverse problem is a highly
nonconvex optimization problem (Li and Demanet, 2016, 2017).
Our previous work has shown that casting bandwidth exten-
sion as a regression problem in supervised learning with a
deep convolutional network can successfully extrapolate the
low frequency data of band-limited recordings (Sun and De-
manet, 2018).

In this note, we demonstrate the reliability of the extrapolated
low frequencies to seed frequency-sweep FWI on the BP 2004
benchmark model (Billette and Brandsberg-Dahl, 2005). Two
precautions are taken to ensure that trivial deconvolution of
a noiseless record (by division by the high frequency (HF)
wavelet in the frequency domain) is not an option: (1) add
noise to the testing records, and (2) for testing, choose a hard
bandpass HF wavelet taken to be zero in the low frequency
(LF) band. In one numerical experiment involving bandlim-
ited data above 0.6Hz from the BP 2004 model, the inversion
results indicate that the predicted low frequencies are adequate
to initialize conventional FWI from an uninformative initial
model, so that it does not suffer from the otherwise-inherent
cycle-skipping at 0.6Hz.

METHOD

CNNs are a method of supervised learning, i.e., inference of yi
from xi. We need to first train the CNN from a large number

of samples (xi,yi) to determine the coefficients of the network,
and then use the network for testing on new xi. The object of
this note is that the xi can be taken to be seismograms ban-
dlimited to the high frequencies, and yi the same seismograms
bandlimited to the low frequencies. Generating training sam-
ples means collecting, or synthesizing seismogram data from
a variety of geophysical models, which enter as space-varying
elastic coefficients in a wave equation.

The performance of the neural network is sensitive to the ar-
chitecture and the hyperparameters, so we must design them
carefully. Next, we illustrate the specific choice of architec-
ture and hyperparameters for bandwidth extension, along with
numerical examples involving synthetic data from community
models.

In EFWI-CNN, the true unknown velocity model for FWI is
referred to as the test model, since it is used to collect the test
data set in deep learning. To collect the training data set, we
create training models by randomly selecting nine parts of the
full-size Marmousi2 P-wave velocity model (Figure 1) with
different structure but the same number of grid points 166×
451. We also downsample the original model to 166× 451
pixels as the test model. We find that the randomized models
produced in this manner are realistic and diversified enough to
demonstrate the generalization of the neural network.

The following processing steps are used to collect each sample
(i.e., shot record) in both the training and test data sets. The ac-
quisition geometry of forward modeling on each model is the
same. It consists of 30 sources and 451 receivers evenly spaced
at the surface. We use a sixth order in space and second order
in time finite-difference modeling method with PML to solve
the 2D acoustic wave equation in the time domain, to generate
the wavefield of both the training and test data sets. The sam-
pling interval and the total recording time are 1.5ms and 5.25s,
respectively. For each trace, we use a LF wavelet below 5Hz
to synthesize the output, and a HF wavelet above 5Hz to syn-
thesize the input of the neural networks. Both the low and high
frequency wavelets are obtained by a sharp windowing of the
same original Ricker wavelet with dominant frequency 15Hz.

The architecture of our neural network is a feed-forward stack
of five sequential combinations of the convolution, batch nor-
malization and PReLU layers, followed by one fully connected
layer that outputs continuous-valued amplitude of the time-
domain signal in the low frequency band. The numbers of
filters in the five convolutional layers are 128, 64, 128, 64 and
1, respectively. The size of all the filters in our neural net-
works are 40×7. Other training paremetes are the same as our
previous work (Sun and Demanet, 2018).

After training with 200 epochs, Figure 2 compares the shot
gather between the bandlimited data (5−30 Hz), true and ex-
trapolated low frequencies (0.1− 5 Hz) where the source is
located at the horizontal distance x = 3.0km on the Marmousi2
model. The extrapolated results in Figure 2(c) show that the
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proposed neural network can accurately predict the recordings
in the low frequency band, which are totally missing before the
test.
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Figure 1: The nine training models randomly extracted from
the Marmousi2 P-wave velocity model to collect the training
data set. The test models are the Marmousi2 P-wave velocity
model and the BP 2004 benchmark model.
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Figure 2: The extrapolation result on the Marmousi model:
comparison among the (a) bandlimited recordings (5−30Hz),
(b) predicted and (c) true low frequency recordings (0.1−
5Hz).

UNCERTAINTY ANALYSIS

With a view toward dealing with complex field data, we inves-
tigate the stability of the neural network’s predictive perfor-
mance under three kinds of discrepancies, or uncertainties, be-
tween training and testing: additive noise; different finite dif-
ference operator in the forward modeling; and different source
wavelet. In every case, we compare the extrapolation accu-
racy with the reference in Figure 2, where training and test-
ing are set up the same way (noiseless bandlimited data, finite
difference operator with second order in time and sixth order
in space, and the high and low frequency wavelets which are
bandpassed from the Ricker wavelet with 15Hz dominant fre-
quency).

In the first case, the neural network is expected to extrapolate
the low frequencies from the noisy bandlimited data. We add
25% Gaussian noise to the bandlimited data in both the training
and test data sets. The low frequencies in the training set are
noiseless as before. Even though noise will disturb the neural
network to find the correct mapping between the bandlimited
data with their low frequencies, Figure 3 shows that the pro-
posed neural network can still successfully extrapolate the low
frequencies of the main reflections. The neural network is able
to perform extrapolation as well as denoising. Incidentally, we
make the (unsurprising) observation that CNN has potential
for the denoising of seismic data.

One main challenge of FWI is that the observed and calcu-
lated data come from different wave propagation schemes. For
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Figure 3: Noise robustness: comparison among the (a) ban-
dlimited recordings (5−30Hz), (b) predicted and (c) true low
frequency recordings (0.1−5Hz) on the Marmousi model.

example, under the control of different numerical dispersion
curves, the phase velocity would have different behaviors if
we used different finite difference (FD) operators to simulate
the observed and calculated data. Therefore, it is necessary to
study the influence of different discretization, or other details
of the simulation, on the accuracy of low frequency extrap-
olation. In our case, the shot gathers in the test data set are
simulated with a fourth order FD operator, but the neural net-
work is trained on the samples simulated with a sixth order FD
operator. With the lower order FD operator, the grid dispersion
is clearly visible in Figure 4(a). However, the extrapolation re-
sult in Figure 4(b) shows that the neural network trained on the
sixth order operator is able to extrapolate the low frequencies
of the bandlimited data collected with the fourth order oper-
ator. The neural network appears to be stable with respect to
mild modifications to the forward modeling operator, at least
in the examples tried.
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Figure 4: Forward modeling operator robustness: comparison
among the (a) bandlimited recordings (5−30Hz), (b) predicted
and (c) true low frequency recordings (0.1−5Hz) on the Mar-
mousi model.

Another uncertainty is the unknown source wavelet. To check
the extrapolation capability of the neural network in the con-
text of data excited by an unknown source wavelet, we train
the neural network with a 15Hz Ricker wavelet, but test it with
a 10Hz Ricker wavelet. In this case, we bandpass the low and
high wavelets from the Ricker wavelet with different dominant
frequency when we synthesize the samples in the training and
test data set. Figure 5 shows that the neural network trained
on the data from the 15Hz source wavelet is able to extrapo-
late the data synthesized with the 10Hz source wavelet. The
commonplace issue of the source wavelet being unknown or
poorly known in FWI has seemingly little effect on the perfor-
mance of the proposed neural network to extrapolate the low
frequency data, at least in the examples tried.

Even though all of the uncertain factors hurt the accuracy of
extrapolated low frequencies to some extent, the CNN’s pre-
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Figure 5: Unknown source wavelet robustness: comparison
among the (a) bandlimited recordings (5−30Hz), (b) predicted
and (c) true low frequency recordings (0.1−5Hz) on the Mar-
mousi model.

diction has a degree of robustness that surprised us. All of
the extrapolation results in the above numerical examples can
be further improved by increasing the diversity of the training
data set, because subjecting the network to a broader range of
scenarios can fundamentally reduce the generalization error of
the deep learning predictor.

EXTRAPOLATED FWI: BP MODEL

To check the validity of the method, we perform EFWI-CNN
on the BP 2004 benchmark model (Figure 6) with the extrapo-
lated low frequency data predicted by the neural network trained
on the submodels of Marmousi2 P-wave velocity model (Fig-
ure 1). The objective function of the inversion is formulated
as the least-squares misfit between the observed and calcu-
lated data in the time domain. We use the LBFGS (Nocedal
and Wright, 2006) optimization method to update the model
gradually from the lowest frequency that the data contained, to
successively higher frequencies.
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Figure 6: The 2004 BP benchmark velocity model used to col-
lect the test data set for studying the generalizability of the
proposed neural network.

To reduce the computation burden, we downsample the BP
2004 benchmark model to 80×450 grid points with a grid in-
terval of 150m. Numerical examples show that, starting from
the bad initial model (Figure 7(a)), the highest starting fre-
quency to avoid cycle-skipping on this model is 0.3Hz. There-
fore, we should extrapolate the bandlimited data to at least
0.3Hz to invert the BP model successfully.

In this example, we use a 7Hz Ricker wavelet as the source to
simulate the fullband seismic records on both the training mod-
els (submodels of Marmousi2) and the test model (BP model).
The sampling interval and the total recording time are 5ms and
10s, respectively. To collect the input of the CNN, a highpass
filter where the low frequency band (0.1− 0.5Hz) is exactly

zero is applied to the fullband seismic data. The bandlimited
data (0.6−20Hz) are fed into the proposed CNN model to ex-
trapolate the low frequency data in 0.1−0.5Hz trace by trace.

In addition to the training procedure described earlier, four
modifications are used to improve the extrapolation accuracy
on the BP model: (1)Increase the filter size to 200; (2)Increase
the width of the last convolutional layer from 1 to 32; (3)Add
one dropout layer (Srivastava et al., 2014) with a probability of
50% after the first convolution layer to further reduce the gen-
eralization error. (4)Rescale the input feature by dividing the
bandlimited recording by its maximum amplitude and rescale
the output of CNN by multiplying the amplitude of LF with a
large constant.

The extrapolated low frequency data are used to invert the
low-wavenumber velocity model with the conventional FWI
method. We observe that the accuracy of extrapolated low fre-
quency decreases as the offset increases, so we limit the max-
imum offset to 12km. Starting from the initial model (Fig-
ure 7(a)), Figure 7(b) and Figure 7(c) show the low-wavenumber
inverted models using 0.3Hz extrapolated data and 0.3Hz true
data, respectively. Compared to the initial model, the resulting
model using the 0.3Hz extrapolated data reveals the positions
of the high and low velocity anomalies, which is almost the
same as that of true data. The low-wavenumber background
velocity models can still initialize the frequency-sweep FWI
in the right basin of attraction.

Figure 8 compares the inverted models from FWI using 0.6-
2.4Hz bandlimited data, starting from the respective large-wavenumber
models in the previous figure. In (a), the resulting model starts
from the original initial model. In (b), the resulting model
starts from the inverted low-wavenumber velocity model using
0.3Hz extrapolated data. In (c), the resulting model starts from
the inverted low-wavenumber velocity model using 0.3Hz true
data. With the low-wavenumber velocity model, FWI can find
the accurate velocity boundaries by exploring higher frequency
data. However, the inversion settles in a wrong basin with only
the higher frequency components. The low frequencies ex-
trapolated with deep learning are reliable enough to overcome
the cycle-skipping problem on the BP model, even though the
training data set is ignorant of the particular subsurface struc-
ture of BP – salt bodies. Therefore, the neural network ap-
proach has the potential to deal favorably with real field data.

So far, the experiments on BP 2004 have assumed that data are
available in a band starting at 0.6Hz. We now study the per-
formance of EFWI-CNN when this band starts at a frequency
higher than 0.6Hz. We still start the frequency-sweep FWI
with 0.3Hz extrapolated data, and the highest frequency is still
fixed at 2.4Hz. With the increase of the lowest frequency of
bandlimited data, Figure 9 compares the quality of the inverted
models at each iteration for FWI using fullband data, EFWI-
CNN, and FWI using only the bandlimited data. The norm of
the relative model error is used to evaluate the model quality,
as (Brossier et al., 2009)

mq =
1
N
‖minv−mtrue

mtrue
‖2 (1)

where minv and mtrue are the inverted model and the true model,
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respectively. N denotes the number of grid point in the com-
putational domain. The performance of EFWI-CNN of course
decreases with the increase of the lowest frequency of the ban-
dlimited data, because this leads to more extrapolated data in-
volved in the frequency-sweep FWI. The more iterations of
FWI with the extrapolated data, the more errors the inverted
model will have before exploring the true bandlimited data.
Overfitting of the unfavorable extrapolated data makes the in-
version worse after several iterations with the extrapolated data.
However, EFWI-CNN is still superior to using FWI with only
bandlimited data. We observe that EFWI-CNN with the cur-
rent architecture still helps to reduce the inverted model error
on the BP model when the lowest available frequency is as
high as 1.2Hz.
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Figure 7: Comparison among (a) the initial model for FWI on
the BP model, the inverted low-wavenumber velocity models
using (b) 0.3Hz extrapolated data and (c) 0.3Hz true data. The
inversion results in (b) and (c) are started from the initial model
in (a).

Even though we are encouraged by the ability of a CNN to
generate [0.1,0.5]Hz data for the BP 2004 model, much work
remains to be done to be able to find the right architecture that
will generate data in larger frequency bands, for instance in
the [0.1,1.4]Hz band. Finding a suitable network architecture,
hyperparameters, and training schedule for such cases remains
an important open problem. Other community models, and
more realistic physics such as elastic waves, are also left to be
explored.

CONCLUSIONS

Extrapolated low frequency data from a CNN can be reliable
enough to invert the low-wavenumber velocity model, which
can then be used for initializing FWI on the bandlimited data
without cycle-skipping. Training can be done on markedly dif-
ferent geophysical models than the scenario for which the net-
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Figure 8: Comparison of the inverted models from FWI using
0.6-2.4Hz bandlimited data. In (a), resulting model starts from
the original initial model. In (b), resulting model starts from
the inverted low-wavenumber velocity model using 0.3Hz ex-
trapolated data. In (c), resulting model starts from the inverted
low-wavenumber velocity model using 0.3Hz true data.

work is then tested. Even though there is freedom in choosing
the architectural parameters of the deep neural network, mak-
ing the CNN have a large receptive field is necessary for low
frequency extrapolation.
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