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Low frequency extrapolation with deep learning
Hongyu Sun∗ and Laurent Demanet, Massachusetts Institute of Technology

SUMMARY

The lack of the low frequency information and good initial
model can seriously affect the success of full waveform inver-
sion (FWI) due to the inherent cycle skipping problem. Rea-
sonable and reliable low frequency extrapolation is in principle
the most direct way to solve this problem. In this paper, we
propose a deep-learning-based bandwidth extension method
by considering low frequency extrapolation as a regression
problem. The Deep Neural Networks (DNNs) are trained to
automatically extrapolate the low frequencies without prepro-
cessing steps. The band-limited recordings are the inputs of the
DNNs and, in our numerical experiments, the pretrained neu-
ral networks can predict the continuous-valued seismograms
in the unobserved low frequency band. For the numerical ex-
periments considered here, it is possible to find the amplitude
and phase correlations among different frequency components
by training the DNNs with enough data samples, and extrapo-
late the low frequencies from the band-limited seismic records
trace by trace. The synthetic example shows that our approach
is not subject to the structural limitations of other methods to
bandwidth extension, and seems to offer a tantalizing solution
to the problem of properly initializing FWI.

INTRODUCTION

It is recognized that the low frequency data are essential for
FWI since the low wavenumber components are needed for
FWI to avoid convergence to a local minimum, in case the
initial models miss the reasonable representation of the com-
plex structure. However, because of the acquisition limita-
tion and low-cut filters in seismic processing, the input data
for seismic inversion are typically limited to a band above
3Hz. With assumptions and approximations to make infer-
ence from tractable but simplified models, geophysicists have
started estimating the low wavenumber components from the
band-limited records by signal processing methods. For exam-
ple, they recover the low frequencies by the envelope of the
signal (Wu et al., 2014; Hu et al., 2017) or the inversion of the
reflectivity series and convolution with the broadband source
wavelet (Wang and Herrmann, 2016; Zhang et al., 2017). How-
ever, the low frequencies recovered by these methods are still
far away from the true low frequency data and can only be
used during the construction of the initial model for FWI. Li
and Demanet (2016) attempt to extrapolate the true low fre-
quency data based on phase tracking method (Li and Demanet,
2015). Unlike the explicit parameterization of phases and am-
plitudes of atomic events, here we propose an approach that
deals with the raw band-limited records. The deep convolu-
tional neural networks (CNNs) are trained to automatically re-
cover the missing low frequencies from the input band-limited
data.

Because of the state-of-the-art performance of machine learn-

ing in many fields, geophysicists have begun borrowing such
ideas in seismic processing and interpretation (Chen et al.,
2017; Guitton et al., 2017). Machine learning techniques at-
tempt to leverage the concept of statistical learning associated
with different types of data characteristics. Lewis and Vigh
(2017) investigate convolutional neural networks (CNNs) to
incorporate the long wavelength features of the model in the
regularization term, by learning the probability of salt geobod-
ies being present at any location in a seismic image. Araya-
Polo et al. (2018) directly produce layered velocity models
from shot gathers with DNNs. Richardson (2018) constructs
FWI as recurrent neural networks.

In the case of bandwidth extension, the data characteristics are
the amplitudes and phases of seismic waves, which are dic-
tated by the physics of wave propagation. Among many kinds
of machine learning algorithms, we have selected DNNs for
low frequency extrapolation due to the increasing community
agreement (Grzeszczuk et al., 1998; De et al., 2011; Araya-
Polo et al., 2017) in favor of this method as a reasonable surro-
gate for physics-based process. The universal approximation
theorem also shows that the neural networks can be used to
replicate any function up to our desired accuracy if the DNNs
have enough hidden layers and nodes (Hornik et al., 1989).
Although training is therefore expected to succeed arbitrarily
well, only empirical evidence currently exists for the perfor-
mance of testing a network out of sample.

In this paper, we choose to focus on CNNs. The idea behind
CNNs is to mine the hidden correlations among different fre-
quency components. The raw band-limited signals in the time
domain are directly fed into the CNNs for regression and band-
width extension. The limitations of neural networks for such
signal processing tasks, however, are (1) the lack of general-
izability guarantees and (2) the absence of a physical inter-
pretation for the operations performed by the networks. Even
so, the preliminary results shown here for the synthetic dataset
demonstrate a new direct method that attempts to extrapolate
the true values of the low frequencies rather than simply esti-
mating and compensating the low frequency energy.

THEORY AND METHOD

A neural network defines a mapping y= f (x,w) and learns the
value of the parameters w that result in a good fit between x
and y. DNNs are typically represented by composing together
many different functions to find complex nonlinear relation-
ships. The chain structures are the most common structures in
DNNs (Goodfellow et al., 2016):

y = f (x) = fL(... f2( f1(x))), (1)

where f1, f2 and fL are the first, the second and the Lth layer of
the network. The overall length of the chain L gives the depth
of the deep learning model. The final layer is the output layer,
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which defines the size and type of the output data. The training
sets specify directly what the output layer must do at each point
x but not specify the behavior of other layers. They are hidden
layers and computed by activation functions. The nonlinear-
ity of the activation function enables the neural network to be
a universal function approximator. Rectified activation units
are essential for the recent success of DNNs because they can
accelerate convergence of the training procedure. Numerical
experiment shows that, for bandwidth extension, Parametric
Rectified Linear Unit (PReLU)(He et al., 2015) works better
than the Rectified Linear Unit (ReLU). The formula of PReLU
is

g(α,y) =
{

αy, i f y < 0
y, i f y≥ 0

, (2)

where α is also a learnable parameter and would be adaptively
updated for each rectifier during training.

Unlike the classification problem that trains the DNNs to pro-
duce a probability distribution, regression problem trains the
DNNs for the continuous-valued output. It evaluates the per-
formance of the model by calculating the mean-squared error
(MSE) of the predicted outputs f (xi;w) and the actual outputs
yi:

J(w) =
1
m

m∑
i=1

L(yi, f (xi;w)), (3)

where the loss L is the squared error between the true low
frequencies and the estimated outputs of the neural networks.
The cost function J is usually minimized over w by stochastic
gradient descent (SGD) algorithm using a subset of the train-
ing set. This subset is called a mini-batch. Each evaluation
of the gradient using the mini-batch is an iteration. The full
pass of the training algorithm over the entire training set us-
ing mini-batches is an epoch. The learning rate η (step-size)
is a key parameter for deep learning and required to be fine-
tune. Adaptive moment estimation (Kingma and Ba, 2014) is
one of the state-of-the-art SGD algorithms which can adapt the
learning rate for each parameter by dividing the learning rate
for a weight by a moving average for that weight. Both of the
gradients and the second moments of the gradients are used to
calculate the moving average.
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m̂w√
v̂w + ε

,

m̂w =
mt+1

w
1−β t

1
,

v̂w =
vt+1

w
1−β t

2
,

vt+1
w = β

t
2vt

w +(1−β
t
2)(

∂J(wt)

∂w
)2,

mt+1
w = β

t
1mt

w +(1−β
t
1)

∂J(wt)

∂w
,

(4)

where β1,β2 are the forgetting factors for gradients and second
moments of gradients, respectively. They control the decay
rates of the exponential moving averages. ε is a small number
used to prevent division by zero. The gradients ∂J(wt )

∂w of the
neural networks are calculated by the backpropagation method
(Goodfellow et al., 2016)

One typical architecture of DNNs that uses the convolution to
extract spatial features is CNNs. CNNs characterized by local
connections and weight sharing can exploit the local correla-
tion of the input image. The hidden units are connected to a lo-
cally limited subset of units in the input, which is the receptive
field of the filter. The size of the receptive field increases as we
stack multiple convolutional layers, so the CNNs can also learn
the global features. The CNNs are normally designed to deal
with image classification problems. For bandwidth extension,
the data to be learned are the one-dimensional time-domain
seismic signals, so we directly consider the amplitude at each
sampling point as the pixel value of the image to be fed into
the CNNs. The basic construction of CNNs in this paper is the
convolutional layer with N filters of size n× 1 followed by a
batch normalization layer and a PReLU layer. The filter num-
ber in each convolutional layer determines the number of the
feature map or the channel of its output. Each output channel
of the convolutional layer is obtained by convolving the chan-
nel of the previous layer with one filter, summing, adding a
bias term. The batch normalization layer can speed up training
of CNNs and reduce the sensitivity to network initialization
by normalizing each input channel across a mini-batch. Al-
though the pooling layer is typically used in the conventional
architecture of CNNs, we leave it out because both the input
and output signals have the same length, so downsampling is
unhelpful for bandwidth extension in our experiments.

Since CNNs belong to supervised learning methods, we need
to firstly train the CNNs from a large number of samples to de-
termine the coefficients of the network, and, secondly, use the
network for testing. According to the statistical learning the-
ory, the generalization error is the difference between the ex-
pected and empirical error. It can be approximately measured
by the difference between the errors on the training and test
sets. For the purpose of generalization, the models to create the
large training sets should be able to represent many subsurface
structures, including different types of reflectors and diffrac-
tors, so we can find a common set of parameters for data from
a specific region. The performance of the neural networks is
sensitive to the architecture and hyperparameters, so we should
design them carefully. Next, we illustrate the specific choice of
the architecture and hyperparameters for bandwidth extension
along with the numerical example.

NUMERICAL EXAMPLE

We demonstrate the reliability of the low frequency extrapola-
tion with deep learning method on the Marmousi model (Fig-
ure 1). With the synthetic data, we can evaluate the extrapola-
tion accuracy by the comparison with the true low frequencies.
The full-size model is unseen during the training process and
used to synthesize the test set. To collect the training set, we
randomly select nine parts of the Marmousi model (Figure 2)
with different size and structure, and then interpolate the sub-
models to the same size as the original model. In this way, the
depth and distance of each velocity model are the same. We
believe that the randomized models produced in this manner
are realistic enough to demonstrate the generalization of the
neural network if the number of submodels is large enough,
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so the pretrained network can be exposed to the new data col-
lected on the new model (full-size Marmousi model) with a
certain generalization level.
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Figure 1: The Marmousi velocity model used to collect the test
dataset (unseen during the training process).
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Figure 2: The nine submodels extracted from the Marmousi
model to collect the training dataset.

The acquisition geometry has 30 sources and 300 receivers
evenly spaced on the surface. We use the finite-difference
modelling method with PML to solve the 2D acoustic wave
equation in the time domain to generate the full-bandwidth
wavefields of both the training and test datasets. The Ricker
wavelet’s dominant frequency is 20Hz and its maximum am-
plitude is one. The sampling interval and the total recording
time are 1ms and 2.9s, respectively. Each time series or trace
is considered as one sample in the dataset, so we have 81,000
training samples and 9,000 test samples. For each sample, we
use the data in the band above 5Hz as the inputs and the data in
the low frequency band (0.3-5Hz) as the outputs of the neural
network.

The architecture of our neural network is a feed-forward stack
of five sequential combinations of the convolution, batch nor-
malization and PReLU layers, and finally followed by one fully
connected layer which outputs continuous-valued amplitude of
the time-domain signal in the low frequency band. The filter
numbers of the five convolutional layers are 128, 64, 128, 64
and 1, respectively. We use only one filter in the last convo-
lutional layer to reduce the number of channel to one. The
variation of the channel number can add nonlinearity to our
model. The filter size of all the filers in our neural networks
are 80× 1. Unlike the small filer size commonly used in im-
age classification problem, it is essential for bandwidth exten-
sion to use large filer. The large filter size enables CNNs to
have enough feasibility to learn the ability of reconstructing
the long-wavelength information from the mapping between
the band-limited data and their true low frequencies. The stride
of the convolution is one and the zero padding is used to make
the output length of each convolution layer the same as its in-
put. The initial value of the bias is zero. The weight initializa-
tion is via the Glorot uniform initializer (Glorot and Bengio,
2010). It randomly initializes the weights from a truncated

normal distribution centered on zero with the standard devia-
tion

√
2/n1 +n2 where n1 are n2 are the numbers of input and

output units in the weight tensor, respectively. With this ar-
chitecture, we train the network with the Adam optimizer and
use a mini-batch of 20 samples at each iteration. The initial
learning rate and forgetting rate of the Adam are the same as
the original paper (Kingma and Ba, 2014).
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Figure 3: The training error (MSE) on the Marmousi training
dataset with the proposed neural network.
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Figure 4: Comparison between the (a) band-limited recordings
(5−50Hz), (b) true and (c) predicted low frequency recordings
(0.3− 5Hz). The band-limited data in (a) are the inputs of
CNNs to predict the low frequencies in (b).

The training process of the 500 epochs is shown in Figure 3.
After training, we test the performance of the neural networks
by feeding the band-limited data in the test set into the model
and obtain the extrapolated low frequencies of the full-size
Marmousi model. Figure 4 compares the shot gathers between
the band-limited data (5− 50Hz), true and extrapolated low
frequencies (0.3−5Hz) where the source is located at the hor-
izontal distance x = 2.2km. The extrapolated results in Fig-
ure 4(c) show that the neural networks accurately predict the
recordings in the low frequency band, which are totally miss-
ing before the test. Figure 5 compares two individual seis-
mograms where the receivers are located at the horizontal dis-
tance x = 1.73km and x = 2.25km, respectively. The extrapo-
lated low frequency data match the true recordings well. Then
we combine the extrapolated low frequencies with the band-
limited data and compare the amplitude spectrum in the fre-
quency band 0.3− 20Hz between the data without low fre-
quencies, with true low frequencies and with extrapolated low
frequencies in Figure 6. The pretrained neural networks suc-
cessfully recover the low frequency information from the band-
limited data in Figure 6(a). The amplitude spectrum com-
parison of the single trace where the receiver is located at
x = 2.25km (Figure 7) clearly shows that the neural networks
reconstruct the true low frequency energy very well.

Although our method is not based on any physical model, some
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limitations can still deteriorate the extrapolation accuracy. The
most important limitation is the inevitable generalization error.
As a data-driven statistical optimization method, deep learning
requires a large number of samples (usually millions) to be-
come an effective predictor. Since the training dataset in this
example is small (81,000 samples) but the model capacity is
large (3,290,946 trainable parameters after downsampling the
signals by factor of three), it is very easy for the neural network
to be overfitting, which seriously constrains the extrapolation
accuracy. Therefore, in practice, it is standard to use regular-
ization, dropout or even collect larger training set to relieve
this problem. In addition, the training time of deep learning is
highly related to the size of dataset and the model capacity, and
thus is very demanding. For instance, the training process in
this example takes one day on eight GPUs for the 500 epochs.
To speed up the training by reducing the number of weights
of neural networks, we can downsample both the inputs and
outputs, and then use band-limited interpolation method to re-
cover the signal after extrapolation. Another limitation in deep
learning is due to the unbalanced data. The energy of the direct
wave is very strong compared with the reflected waves, which
biases the neural networks towards fitting the direct wave and
having less contribution to the reflected waves. So the extrap-
olation accuracy of the reflected waves is not as good as the
primary wave in this example. Moreover, as we perform band-
width extension trace by trace, the accumulation of the pre-
dicted errors reduce the coherence of the event across traces.
Hence, it is probably better to extrapolate multi-trace seismo-
grams simultaneously. Finally, the effects of the architecture
and hyperparameters of neural networks on the performance
of bandwidth extension still need to be studied in detail, and
thus we can further improve the extrapolation accuracy by ex-
ploring DNNs that are more suitable.

CONCLUSIONS

In this paper, we have applied deep learning method to the
challenging bandwidth extension problem that is essential for
FWI. We formulate bandwidth extension as a regression prob-
lem in machine learning and propose an end-to-end trainable
model for low frequency extrapolation. Without any prepro-
cessing on the input (the band-limited data) and postprocessing
on the output (the extrapolated low frequencies), DNNs have
the ability to recover the low frequencies, which are totally
missing in the seismic data in our experiments. The choice of
the architectural parameters is non-unique. The extrapolation
accuracy can be further modified by adjusting the architecture
and hyperparameters of the neural networks.
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Figure 5: Comparison between the predicted (red line), the true
(blue dash line) recording in the low frequency band (0.3−
5Hz) and the band-limited recording (black line) (5− 50Hz)
at the horizontal distance (a) (b) x = 1.73km and (c) (d) x =
2.25km.
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Figure 6: Comparison of the amplitude spectrum between (a)
the band-limited recordings (5−20Hz), the recordings (0.3−
20Hz) with (b) true and (c) predicted low frequencies (0.3−
5Hz).
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